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1 UMR CNRS-UM2-UM1-IFREMER-IRD 5119 Ecologie des Systèmes Marins Côtiers, Montpellier 2 University, Montpellier, France, 2 Centre for Environment, Fisheries and

Aquaculture Science, Lowestoft Laboratory, Lowestoft, United Kingdom, 3 Ocean and Earth Science, National Oceanography Centre, University of Southampton,

Southampton, United Kingdom, 4 Edinburgh Ion Microprobe Facility, School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom, 5 Population Ecology

Division, Bedford Institute of Oceanography, Dartmouth, Canada

Abstract

Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that
variations in otolith d18O values closely reflect differences in temperature history of fish when accounting for salinity
induced variability in water d18O. To investigate this, we exploited the environmental and migratory data gathered from a
decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the
tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three
consecutive years, we first predicted annual otolith d18O values for three geographically discrete offshore sub-stocks, using
three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual d18O values
demonstrated .96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced
inter-stock differences in d18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice
distribution in the North Sea. However, although largely congruent, measured and predicted annual d18O values of did not
fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith d18O values
measured during tag recording time and corresponding d18O predictions using concomitant tag-recorded temperatures
and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects
linked to variation in physiological response to temperature. Therefore, although otolith d18O in free-ranging fish largely
reflects environmental temperature and salinity, we counsel prudence when interpreting otolith d18O data for stock
discrimination or temperature reconstruction until the mechanisms underpinning otolith d18O signature acquisition, and
associated variation, are clarified.
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Introduction

Ecological studies in offshore marine ecosystems are often

complicated by a lack of information describing the ambient

environmental conditions habitually experienced by resident

populations. Natural proxies that indirectly record the environ-

mental conditions experienced by marine organisms, such as the

isotopic ratio of oxygen in biogenic carbonates (expressed as d18O

values) are therefore particularly valuable for providing long-term

ecological insights into marine environments [1]. The isotopic

composition of oxygen in biogenic carbonates is influenced by

both temperature and the isotopic composition of the ambient

water [2]. However, because water d18O signature is primarily

salinity dependent, it is assumed to remain effectively constant in

offshore water masses [3], where the d18O values of organisms’

calcified structures is gaining increasing recognition as a proxy for

temperature [1]. Since the pioneering study of [4], the isotopic

composition of oxygen in fish otoliths (‘‘ear-stones’’) has thus been

commonly applied as a proxy for seawater temperature both by

ecologists (e.g. [5–7]) and paleontologists (e.g. [8–11]).

Otoliths are calcified structures located within the inner ears of

teleost fish [12] which grow continuously from birth, forming

seasonal accretion increments whose chemical composition reflects

ambient water characteristics at the time of deposition, at least for

some elements and isotopes [13]. Because otolith material is not

resorbed or physiologically altered [12], otoliths offer natural data

storage, providing a retrospective, temporally resolved record of

lifetime environmental history through their structure and

chemistry, often more detailed than the other calcified structures

commonly used in aquatic ecology or paleontology [8,14]. The

universal presence of teleost fish in aquatic ecosystems, and the

ubiquity of otoliths in the fossil record from the late Cretaceous to

present [15], gives otoliths enormous potential value in interpret-

ing past environmental conditions and understanding current
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climate change [1], mainly through the generation of individual-

specific lifelong records of temperature history (e.g. [6,16,17]).

Given the wide range of ocean temperatures [18], otolith d18O

values can also provide a relatively low-cost tool for substantially

improving our knowledge of fish spatial dynamics and population

structure for the effective conservation and sustainable exploitation

of marine fish stocks [19]. To date, otolith d18O values have

allowed successful identification of marine fish origin (e.g. [20,21])

differentiation between resident and migrant fish (e.g. [22–24])

and distinction between mixing and non-mixing stocks (e.g.

[21,25–27]). Attempts have also been made to use them for

reconstructing horizontal and vertical migrations in marine fish

(see [28] for a review). Yet this requires a thorough understanding

of the links between otolith d18O and environmental conditions,

including temperature, salinity and water d18O.

A major assumption underlying the use of otolith d18O values to

reconstruct temperature is that the isotopic fractionation between

otolith aragonite and ambient water is constant between and

within species. However, while otolith d18O heterogeneity across

waterd18O-temperaturecombinations has led several authors to

explore the possibility of differential fractionation equations, at

least between species (e.g. [29–31]), this assumption has never

been ground-truthed using free-swimming fish in their natural

environment.

Physiological (i.e. "vital") effects, either kinetic or metabolic,

have been shown to cause departure from equilibrium during

oxygen fractionation in several biogenic carbonates (e.g. [32–35]),

and have been repeatedly suspected during otolith formation (e.g.

[30,36,37]), although this possibility has never been fully

addressed. Experimental studies investigating the influence of

"vital effects" on water-otolith d18O fractionation have been few to

date, all involving immature fish [31,36,38–43]. All concluded that

otolith d18O was driven mainly by ambient temperatures, largely

independently of fish metabolism, especially when compared to

d13C signatures [36,38,43]. Yet, even though aquarium-based

experiments allow for tank-based control of d18O and reduction in

inter-individual metabolic differences, d18O heterogeneity across

temperature-salinity combinations has consistently been observed,

commonly ranging between 0.5 to 1.5 % (e.g. [36,38–41,43]),

equating to 2.3uC–6.1uC differences in temperature estimates

(based on the equation of [2]). Cursory analysis has often related

these findings to inter-individual differences in growth rate [38],

even though they may equally reflect d18O disequilibrium in the

otoliths of some, if not all, the fish investigated. Physiological

processes such as reproduction and growth rate have recently been

shown to exert a major influence on the fractionation of trace

metals between ambient water and otoliths, largely through

modifications of ion-binding conditions in plasma [44]. Accord-

ingly, the influence of vital effects on otolith d18O signatures might

have been largely overlooked to date. This raises the question as to

the accuracy of climatic or geographic inferences drawn from

otolith d18O values, since free-ranging fish from genetically distinct

stocks will experience greater environmental and metabolic

variability.

In this study, we took advantage of concomitant environmental

and migratory data gathered from a decade studying the spatial

dynamics of mature female plaice (Pleuronectes platessa L.) in the

North Sea using archival data storage tags [45,46] to gain insight

into otolith d18O signature acquisition in wild fish populations. By

comparing measured and predicted otolith d18O values in three

sub-stocks with discrete annual distributions, we explored the

relationship between temperature, salinity and otolith d18O values

of mature, free-ranging fish in their natural environment. Two

complementary approaches were applied to assess whether

regional differences in physicochemical conditions in the offshore

marine environment can confidently determine stock of origin,

and to examine how accurately variations in otolith d18O values

reflect differences in ambient temperature. First, using modelled

temperature and salinity data and the equation describing

temperature-dependence of oxygen isotope fractionation during

inorganic aragonite deposition [2] we predicted annual d18O

values over the full distributional ranges of our fish. Predicted

values were then compared with the d18O values measured in a

subset of tagged fish with known temperature and migratory

history to examine the potential interference of intra-specific

variation in otolith seasonal growth on the accuracy of sub-stock

discrimination. Second, we compared high-resolution seasonal

measurements of otolith d18O values with monthly otolith d18O

values predicted from the temperatures measured in situ by the

tagged fish. Finally, we used two different fractionation equations

to explore the potential physiological influences on oxygen isotope

fractionation (i.e. ‘vital effects’). The results presented provide new

insights into the accuracy of otolith d18O values as a proxy for

ambient thermal conditions in wild mature fish, with implications

for studies using otolith d18O values for stock discrimination or

climate change applications.

Material and Methods

The studies that contributed data to this project were conducted

in International waters where no permit was required (in the

North Sea between 51–58uN and 0–8uE). Dispensation for the

landing of undersize fish (immature plaice) in the North Sea under

contract MF0152 was obtained from the UK government (Defra).

Other than dispensation to land immature fish (obtained from

Defra under contract Mf0152, see above), no other specific

permissions were required for our North Sea plaice-tagging work.

Plaice is not an endangered or protected species. As stated above,

no new data was collected as part of our study, rather existing data

from previous contracts has been utilized, all of which have

already been fully referenced in our manuscript. Plaice were

captured from 30 minute beam trawls, and no animals were

sacrificed as part of this study. All of the work that contributed to

our study was subject to approval by CEFAS Animal Welfare and

Ethical Review Committee.

Environmental data and otolith collections
The otolith and environmental data used in the current study

originate from a concerted programme to study the population

dynamics of plaice in the North Sea from 1993 to 2000. In total

785 mature, predominantly female plaice were tagged with

archival data storage tags (see [46] for more details), resulting in

the eventual recovery of 194 individual environmental data

records of between 2 and 512 days.

The tags recorded ambient water temperatures (60.2uC) and

pressures (over the range 0–100 m, assuming seawater density of

1.0256103), at 10-minute intervals throughout the period at

liberty, providing detailed information on environmental condi-

tions experienced, and allowing reconstruction of individual fish

migration routes using the Tidal Location Method (TLM, [47]).

Fish locations ( = ‘‘geolocations’’) were estimated when fish

remained on the seabed for one or more tidal cycle. Pressure

records were converted to depths (assuming 1 m = 1.46 psi), and

the times of high water and accompanying tidal ranges measured

by the resting fish were used to identify geolocation (see [45] for

full details). ‘‘Best-fit’’ individual tracks were then reconstructed by

fitting a piece-wise linear curve through the release position, any

sequential geolocations and the recapture position (where provid-
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ed). This allowed the generation of daily ‘‘positions’’ (grid

references) for every fish and revealed the existence of three

discrete summer feeding aggregations (sub-stocks, [46]), with

predominantly southward migration of all fish to spawning areas

in the Southern North Sea and Eastern English Channel during

the winter (Fig. 1).

Among the 83 fish returned by professional fishermen with

intact tags and otoliths, 24 individuals (8 per sub-stock) were

selected to compare measured and predicted otolith d18O values

(Table 1). All were mature females released and recaptured

between 1997 and 1999. This sub-sample was representative of

the principal sub-stock specific migration patterns, and each data

record allowed unequivocal identification of both spawning areas

and feeding grounds for at least one annual cycle, sometimes two

(Table 1).

Otolith preparation and analysis
All otoliths (paired sagittae), previously stored in paper

envelopes, were cleaned in ultra-pure water and sonified for

5 minutes to remove organic surface debris. Additional loose

material was removed by gently brushing the surface with a sterile

toothbrush under reflected light (650 magnification). Otoliths

were then triple-rinsed in ultra-pure water and dried overnight in

open acid-washed polypropylene vials stored in a clean vertical

laminar flow workstation. Otoliths were embedded in clear epoxy

resin within ethanol-washed aluminium moulds, and the resin

dried for at least three days at 40uC before sectioning.

Although the paired otoliths exhibit differential growth from

metamorphosis [48], this does not induce differences in seasonal

oxygen isotope signature between them [43]. Therefore, to

maximize data collection, both otoliths were used per fish. The

left (symmetrical) otolith was cut twice (in the transverse then the

frontal plane) and used for ageing (transverse section) and

measuring annual otolith d18O signature(s) deposited during the

DST recording time (frontal section). The right (asymmetrical)

otolith was used for high-resolution intra-annual d18O analyses

(frontal section), to maximize temporal resolution.

Figure 1. North Sea sub-stocks of plaice studied. The area covered by plaice migration between summer feeding aggregations (sub-stocks A, B,
and C) and winter spawning grounds (light blue areas, [55]) was divided into 6 regions: the English Channel (EC: latitude ,51.00uN), the Southern
North Sea (SNS: latitude = 51.00–52.49u N), the Western North Sea (WNS: latitude = 52.50–55.49uN; longitude ,2.50uE), the Central North Sea (CNS:
latitude = 52.50–55.49uN; longitude = 2.50–4.99uE), the Eastern North Sea (ENS: latitude = 52.50–55.49uN; longitude $5.00uE) and the Northern North
Sea (NNS: latitude $55.50uN). Arrows show principal migration routes for each sub-stock [45].
doi:10.1371/journal.pone.0108539.g001

Field-Validation of Otolith d18O Value

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e108539



T
a

b
le

1
.

D
e

ta
ils

o
f

fi
sh

an
al

ys
e

d
fo

r
an

n
u

al
o

to
lit

h
d

1
8
O

si
g

n
at

u
re

s
o

f
su

b
-s

to
ck

s
A

(N
N

S)
,

B
(E

N
S)

an
d

C
(W

N
S)

.

S
u

b
-s

to
ck

ID
R

e
ca

p
tu

re
d

a
te

S
iz

e
(c

m
)

A
g

e
(y

e
a

rs
)

D
S

T
re

co
rd

(s
ta

rt
&

e
n

d
d

a
te

s)
B

re
e

d
in

g
a

re
a

a
n

d
d

a
te

(f
ro

m
D

S
T

re
co

rd
s)

Y
e

a
r(

s)
a

n
a

ly
se

d
fo

r
d

1
8

O

A
A

-1
M

a
y

9
9

4
4

1
4

.3
5

1
2

d
a

y
s

(D
e

c.
9

7
-

A
p

ri
l

9
9

)
C

N
S

(i
n

Ja
n

u
a

ry
)
6

2
1

9
9

7
&

1
9

9
8

(a
g

e
1

2
–

1
3

)

A
-2

Ja
n

.
9

9
4

0
5

.9
3

9
8

d
a

y
s

(D
e

c.
9

7
-

Ja
n

.
9

9
)

C
N

S
(i

n
Ja

n
u

a
ry

)
1

9
9

8
(a

g
e

5
)

A
-3

Ju
ly

9
9

4
0

1
2

.5
3

8
6

d
a

y
s

(D
e

c.
9

7
-

D
e

c.
9

8
)

C
N

S
(i

n
D

e
ce

m
b

e
r)

1
9

9
8

(a
g

e
1

1
)

A
-4

D
e

c.
9

8
4

0
8

.8
3

6
5

d
ay

s
(D

e
c.

9
7

-
D

e
c.

9
8

)
C

N
S

(i
n

Ja
n

u
ar

y)
1

9
9

8
(a

g
e

8
)

A
-5

Ju
n

e
0

0
3

7
6

.3
3

5
4

d
a

y
s

(F
e

b
.

9
9

-
F

e
b

.
0

0
)

S
N

S
(i

n
F

e
b

ru
a

ry
)

1
9

9
9

(a
g

e
5

)

A
-6

Se
p

t.
9

8
3

8
6

.6
2

7
2

d
ay

s
(D

e
c.

9
7

-
A

u
g

.
9

8
)

C
N

S
(i

n
Fe

b
ru

ar
y)

1
9

9
7

(a
g

e
5

)

A
-7

M
ar

ch
9

8
3

8
9

.2
1

3
4

d
ay

s
(O

ct
.

9
7

-
M

ar
ch

9
8

)
C

N
S

(i
n

Ja
n

u
ar

y)
1

9
9

7
(a

g
e

8
)

A
-8

M
ar

ch
9

8
3

9
8

.1
1

1
0

d
ay

s
(D

e
c.

9
7

-
M

ar
ch

9
8

)
C

N
S

(i
n

Ja
n

u
ar

y)
1

9
9

7
(a

g
e

7
)

B
B

-1
D

e
c.

9
8

4
8

7
.9

3
8

2
d

a
y

s
(O

ct
.

9
7

-
N

o
v

.
9

8
)

S
N

S
(i

n
Ja

n
u

a
ry

)
6

2
1

9
9

7
&

1
9

9
8

(a
g

e
6

–
7

)

B
-2

F
e

b
.

9
9

4
6

1
2

.0
3

1
7

d
a

y
s

(O
ct

.
9

7
-

A
u

g
.

9
8

)
S

N
S

(i
n

Ja
n

u
a

ry
)

1
9

9
8

(a
g

e
1

1
)

B
-3

Ja
n

.
9

9
4

1
7

.9
2

6
2

d
a

y
s

(O
ct

.
9

7
-

Ju
ly

9
8

)
E

N
S

(i
n

Ja
n

u
a

ry
)

1
9

9
7

(a
g

e
7

)

B
-4

Ju
n

e
9

8
4

1
5

.3
2

0
2

d
a

y
s

(N
o

v
.

9
7

-
M

a
y

9
8

)
E

N
S

(i
n

F
e

b
ru

a
ry

)
1

9
9

8
(a

g
e

5
)

B
-5

O
ct

.
9

9
3

8
7

.7
1

9
4

d
ay

s
(F

e
b

.
-

A
u

g
.

9
9

)
SN

S
(i

n
Fe

b
ru

ar
y)

1
9

9
9

(a
g

e
7

)

B
-6

A
p

ri
l

9
8

3
9

6
.1

1
5

3
d

ay
s

(N
o

v.
9

7
-

A
p

ri
l

9
8

)
EN

S
(i

n
Fe

b
ru

ar
y)

1
9

9
7

(a
g

e
5

)

B
-7

Fe
b

.
9

8
3

6
6

.0
1

0
4

d
ay

s
(N

o
v.

9
7

–
Fe

b
.

9
8

)
SN

S
(i

n
Ja

n
u

ar
y)

1
9

9
7

(a
g

e
5

)

B
-8

Fe
b

.
9

8
4

0
7

.0
9

7
d

ay
s

(O
ct

.
9

7
-

Ja
n

.
9

8
)

EN
S

(i
n

Ja
n

u
ar

y)
1

9
9

7
(a

g
e

6
)

C
C

-1
A

p
ri

l
9

9
5

2
9

.1
4

1
1

d
a

y
s

(F
e

b
.

9
8

-
A

p
ri

l
9

9
)

E
C

(i
n

D
e

ce
m

b
e

r)
6

2
1

9
9

7
&

1
9

9
8

(a
g

e
7

–
8

)

C
-2

N
o

v
.

9
9

3
6

7
.8

3
8

4
d

a
y

s
(O

ct
.9

8
-

O
ct

.
9

9
)

E
C

(i
n

Ja
n

u
a

ry
)

1
9

9
9

(a
g

e
7

)

C
-3

M
a

rc
h

0
0

3
9

1
2

.1
3

0
3

d
a

y
s

(F
e

b
.

9
8

-
D

e
c.

9
9

)
E

C
(i

n
Ja

n
u

a
ry

)
1

9
9

9
(a

g
e

1
1

)

C
-4

A
u

g
.

9
9

3
8

5
.5

2
3

1
d

a
y

s
(O

ct
.

9
8

-
M

a
y

9
9

)
S

N
S

(i
n

Ja
n

u
a

ry
)

1
9

9
9

(a
g

e
5

)

C
-5

O
ct

.
9

9
4

1
1

0
.7

2
2

3
d

ay
s

(F
e

b
.

-
Se

p
t.

9
9

)
SN

S
(i

n
Ja

n
u

ar
y)

1
9

9
9

(a
g

e
1

0
)

C
-6

Se
p

t.
9

8
4

4
1

0
.6

2
2

1
d

ay
s

(D
e

c.
9

7
-

Ju
ly

9
8

)
SN

S
(i

n
D

e
ce

m
b

e
r)

1
9

9
8

(a
g

e
1

0
)

C
-7

Se
p

t.
9

9
4

1
9

.6
1

8
2

d
ay

s
(F

e
b

.
-

A
u

g
.

9
8

)
SN

S
(i

n
Ja

n
u

ar
y)

1
9

9
8

(a
g

e
9

)

C
-8

Ju
n

e
9

8
3

9
1

1
.3

1
0

9
d

ay
s

(F
e

b
.-

M
ay

9
8

)
EC

(i
n

D
e

ce
m

b
e

r)
1

9
9

7
(a

g
e

1
0

)

B
o

ld
in

d
ic

at
e

s
in

d
iv

id
u

al
s

se
le

ct
e

d
fo

r
d

e
ta

ile
d

an
al

ys
is

o
f

in
tr

a-
an

n
u

al
va

ri
at

io
n

s
in

d
1

8
O

.
C

N
S:

ce
n

tr
al

N
o

rt
h

Se
a;

EN
S:

e
as

te
rn

N
o

rt
h

Se
a;

SN
S:

so
u

th
e

rn
N

o
rt

h
Se

a;
EC

:
En

g
lis

h
C

h
an

n
e

l.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
8

5
3

9
.t

0
0

1

Field-Validation of Otolith d18O Value

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e108539



Fish ageing. Transverse otolith sections (,500 mm thick)

were mounted on glass slides using epoxy resin and ground down

using 600 grit silicon carbide paper and ultra-pure water until the

otolith core was exposed. Sections were then polished with 0.3 mm

aluminium oxide paste and rinsed in ultra-pure water. Annual

growth bands were identified and counted twice by two

independent readers. Non-matching estimates were followed up

with a third reading to reach a final decision. Age estimation

applied a common notional birth date (after [13]) of February 1rst,

based on peak plaice spawning times in the North Sea [49,50].

Individual age (in years) was calculated by adding the annual

fraction between the capture date and February 1rst to the number

of complete annual growth bands identified in the otolith.

Annual otolith d18O measurements. Annual otolith d18O

values were measured for all individuals, for 1–2 years of life,

depending on the recording time of the archival tags (Table 1),

allowing the accumulation of nine annual d18O values per sub-

stock across the 1997–99 tagging period. Frontal sections (longest

point from core to rostrum) approximately 500 mm thick were

made from the left otoliths. Both sides were ground down to 300–

400 mm using 600 grit silicon carbide paper and ultra-pure water

until the otolith edge within the section was perpendicular to the

section surface. Sections were then embedded in an epoxy mount,

polished with 0.3 mm aluminium oxide paste, rinsed in ultra-pure

water and photographed under reflected light. For each fish, one

to two yearly powder samples (reflecting the total growth during

archival tag data recording while the fish was at liberty) were

collected from the otolith frontal section, using a computer-

controlled micro-milling system (New Wave Research "Micro-

Mill"). The seasonal growth marks were used to identify DST-

recording periods from magnified images of the sections, and were

digitized to provide navigational input to the instrument. One or

two sequential layers of 250 mm depth, each comprising an entire

annual growth band, were then milled from the distal edge (most

recent growth) inwards. The corresponding powder samples (60–

100 mg in weight) were collected separately and analysed at the

Woods Hole Oceanographic Institution using a Finnigan

MAT252 mass spectrometer system with a Kiel III carbonate

device. All isotopic values were reported relative to the interna-

tional carbonate standard VPDB, using the international standard

delta notation:

d18O~
Rsample

Rstandard
{1

� �
|1000 ð Þ

Where R is the 18O/16O ratio in the sample or standard.

Analytical precision for d18O values, based on the SD of daily

analysis of NBS-19 carbonate standard, was 60.07 %.

Seasonal otolith d18O measurements using Secondary Ion

Mass Spectrometry (SIMS). For a subset of representative fish

with data records .200 days (n = 4 per sub-stock, Table 1), high-

resolution intra-annual measurements of otolith d18O values were

made over the tag-recording period. Otolith sections (,500 mm

thick) were ground down to 300–400 mm using 600 grit silicon

carbide paper and ultra-pure water, ensuring that the otolith edge

within the section was perpendicular to the section surface. The

sections were embedded in an epoxy mount, polished with 0.3 mm

aluminium oxide paste, rinsed in ultra-pure water and imaged

under reflected light to record the growth band positions. Before

analysis at the Edinburgh Ion Microprobe Facility (EIMF), mounts

were gold-coated. Otolith d18O values were measured on a

CAMECA IMS 1270 ion microprobe using a ,5 nA primary
133Cs+ beam. Ablations approximately 20 mm in diameter

(equivalent to 1–3 months growth, depending on age and otolith

growth rate) were executed at 30–40 mm intervals. Secondary ions

were extracted at 210 kV, and 16O (,3.06109 cps) and 18O

(,4.06106 cps) were monitored simultaneously on dual Faraday

cups (L’2 and H’2). Each analysis involved a pre-sputtering time of

50 s, followed by automatic secondary beam and entrance slit

centring and finally data collection in two blocks of 10 cycles.

Otolith d18O values are reported relative to VPDB. Mean external

precision, based on the SD of daily analysis of an inorganic

carbonate standard (University of Wisconsin Calcite standard

UWC-1, [51]), was 60.20 %.

Predictions of otolith d18O values
Sub-stock simulation of annual otolith d18O

values. Annual otolith d18O values were predicted using the

full range of environmental conditions likely to have been

experienced by individuals of the three sub-stocks (Fig. 1) over

the three year study period (1997–1999). Using all geolocations

derived from the 194 tagged fish recaptured between 1993 and

2000 (n = 13,512), monthly distributions were summarized using

grid-maps, showing the cells (0.5u latitude 60.5u longitude)

containing 80% of geolocations for each sub-stock. Average

monthly seabed temperatures and salinities in 1997, 1998 and

1999 were generated for corresponding grid cells using the

General Estuarine Transport Model (GETM), developed and

validated for realistic three-dimensional simulations of tempera-

ture and salinity in the North Sea [52]. The model domain extends

from a boundary in the western English Channel (25uE) into the

North Sea with an eastern boundary in the Baltic (16uE) and then

northwards as far as the Shetland Isles (60uN) at a resolution of

,6 nm and with 25 terrain-following vertical levels. Meteorolog-

ical forcing in the model for the 3 years studied was derived from

the European Centre for Medium-range Weather Forecasting

ERA datasets. Tidal boundaries were calculated from Topex-

Poseidon satellite altimetry, and temperature and salinity bound-

ary conditions were taken from the climatologic predictions of the

POLCOMS S12 model (http://cobs.pol.ac.uk/modl/metfcst/

POLCOMS DOCUMENTATION).

For each sub-stock, monthly GETM temperature and salinity

estimates for each grid cell and year were used to predict

corresponding otolith d18O values. For this, oxygen isotope ratios

of ambient water (d18Ow) were derived from salinity (S) estimates

using the equation of [53] for the North Sea:

d18Ow VSMOWð Þ~0:274|S{9:3 ð1Þ

Then converted into d18Ow (VPDB) using the equation of [54]:

d18Ow~0:99978|d18Ow{0:22 ð2Þ

Finally, the corresponding temperature estimates (T, in K) were

incorporated in order to predict otolith d18O values (d18Oo) using

the theoretical equation for inorganic aragonite deposition [2]:

1000 lna~ 15:99|
1000

T

� �
{24:25

with : a~
1000zd18Oo

� �
1000zd18Ow

� �
ð3Þ
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The resulting monthly maps of otolith d18O values were used to

simulate the sub-stock specific range of annual otolith d18O

signatures. For this, we generated 10,000 annual migration paths,

using a ‘‘stock’’-constrained random walk simulation (within each

stock, individual "fish" were free to move randomly each month to

any adjacent cell within the sub-stock specific range), so all

simulated paths followed stock-specific seasonal migration pat-

terns. Then, to account for the influence of intra-specific variations

in seasonal otolith growth on the annual d18O signatures for each

sub-stock, three alternative plausible scenarios for otolith annual

growth were applied to differentially weight the monthly values for

each simulated migration path.

Seasonality of opaque-translucent otolith banding fluctuates

according to fish age and latitude in North Sea plaice [55],

implying potential for geographic and individual variations in

monthly otolith growth rates. The opaque zone is mainly accreted

during April to September, and the hyaline (or translucent) zone

from October to March [55]. In the otoliths from our study, the

opaque zone occupied 50–60% of the total width of the annual

growth band, compared with 40–50% for the hyaline zone. In the

North Sea, plaice spawning occurs from the end of December to

the beginning of April [56]. Females are in spawning condition for

at least 5 weeks, during which feeding ceases [49], as spawning and

feeding are mutually exclusive due to limited metabolic scope that

does not allow oxygen supply for both activities [57]. Metabolic

rate during spawning can decrease to 9.1 kJ per day, i.e. 60% of

the standard metabolic rate, estimated at 15 kJ per day [57]. Based

on these physiological data, we considered the three possible

scenarios for otolith annual growth, considering an equal duration

of 6 months for both opaque (April-September) and hyaline zone

(October-March) depositions:

N OG1: otolith growth is constant throughout the year, i.e. the

width of opaque and hyaline zones are identical (equal

weighting of 100% given to all months),

N OG2: otolith growth varies through the year, with the width of

the opaque zone representing 60% of annual growth and the

hyaline zone representing 40% (weighting differs among

months: April to September = 100% and October to March

= 67%),

N OG3: otolith growth varies through the year, with the width of

the opaque zone representing 60% of annual growth and the

hyaline zone representing 40% but growth being 40% lower

during the three breeding months (different weighting among

months: April to September = 100%, October to December

= 83% and January to March = 50%).

The 10,000 simulated random annual migration paths per sub-

stock, weighted to each of the three growth scenarios, produced

30,000 plausible annual d18O values per sub-stock. This provided

a robust platform of predicted d18O values with which to compare

the measured values in our tagged fish.

Prediction of otolith d18O values during DST recording

time. For the 12 individuals selected for SIMS analysis (N = 4 per

sub-stock, Table 1), daily otolith d18O values between release and

recapture were predicted using the corresponding tag-recorded

temperatures. Equivalent ambient salinities for the individual daily

geolocations were extracted from the CEFAS database for North

Sea bottom salinity, where available (16%), or were predicted using

the GETM. Water salinities were converted into d18Ow (VPDB)

values using equations (1) and (2). Daily otolith d18O values (d18Oo)

were predicted from tag-recorded temperatures using both equation

(3) from [2] and an equation recently obtained for juvenile plaice

reared under controlled conditions [43]:

1000lna~ 15:99|
1000

T

� �
{31:14

with : a~
1000zd18Oo

� �
1000zd18Ow

� �
ð4Þ

Depending on the size and age of the fish, our high-resolution

measurements of otolith d18O represented (at best) monthly

resolution. Therefore, individual monthly averages were calculated

from predicted daily d18O estimates, and were compared with

corresponding measured intra-annual d18O values. Intra-annual

otolith growth was assumed to be non-linear, and to vary between

individuals. To calibrate distances within individual otoliths to

calendar dates, the time axis on the measured profile was thus

adjusted (using Analyseries 2.0 [57]) to achieve the best match in

the position of inflection points between the predicted and

observed time series of d18O values.

Data analysis
Inter-annual differences in the salinity, temperature and otolith

d18O values expected over the full distributional area of all three

sub-stocks (53,655 values per year in each case, derived from

average daily model predictions for the 147 cells of the global

distribution map) were tested separately by 1-way (year) fixed-

effects, unbalanced analyses of variance (ANOVAs). Tests for data

normality, homoscedasticity and independence of residuals were

achieved using Shapiro-Wilk normality tests, studentized Breusch-

Pagan tests and Durbin-Watson tests of residuals, respectively.

Post-hoc comparisons were performed using the Tukey test of

multiple means comparisons. Similarly, differences in the annual

environmental exposure (salinity, temperature) and otolith d18O

values (both measured and predicted) of the three sub-stocks were

tested separately by 1-way (sub-stock) fixed effects, unbalanced

ANOVAs and Tukey tests.

Sub-stock discrimination accuracy from otolith annual d18O

values was evaluated using linear discriminant analyses (LDA

function from the R package MASS). To avoid circularity when

the same values are used to build and test the model, "leave-one-

out" procedure was used to train the LDA with otolith d18O

predicted values in each case (N = 30,000 per sub-stock for the

grouped otolith growth scenarios and 10,000 per sub-stock when

selecting only the best fit scenario). Overall correctness in sub-stock

prediction was then assessed using the actual measured otolith

annual d18O values (N = 27, nine per sub-stock).

Lastly, differences between measured and predicted intra-

annual otolith d18O values were tested separately for each sub-

stock, by comparing both minimum and maximum values (N$4)

in each case using non-parametric unilateral Wilcoxon tests for

paired-samples.

All statistical analyses and simulations were performed in R (R

Development Core Team, 2011).

Results

Predicted otolith d18O values
Over the full distributional range experienced by our tagged

plaice, predicted bottom temperatures did not vary significantly

between 1997, 1998 and 1999 (F = 0.84; P = 0.432; df = 2),

fluctuating around an annual mean (6 SD) of 10.41uC63.85uC.

Corresponding predicted bottom salinities did vary significantly by

year (F = 20.01; P,0.001; df = 2), with a slightly higher mean

annual value in 1998 (34.6660.34) than in 1997 (34.5760.22) and
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1999 (34.5560.25). However, this variation (ca. 0.11) did not

significantly influence d18O values, and the constancy in among-

year temperature profiles ensured inter-annual stability (F = 1.46;

P = 0.235; df = 2) in the predicted annual otolith d18O values

across the study area over the period studied (mean: 1.8960.98

%). The three years’ environmental data were therefore pooled to

describe sub-stock specific temperature and salinity conditions and

the calculation of predicted d18O values.

The reconstructed environmental conditions experienced by the

three sub-stocks differed markedly (Fig. 2), as predicted from their

geographically distinct summer feeding locations and winter

migration routes (Fig. 1). Annual temperature profiles were

comparable for sub-stocks B and C, with minima around 6.5uC
in February-March and maxima around 16.5uC in August-

September. By contrast, temperatures experienced by sub-stock

A never exceeded 12uC. Annual salinity profiles were similar for

sub-stocks A and C, with relatively constant salinities throughout

the year (34.8 - 35.1). This contrasted with sub-stock B, for which

salinities were ,34.5 and more variable irrespective of the month

(Fig. 2).

As a result, otolith d18O values were predicted to vary by month

and by sub-stock (Table 2). For all sub-stocks, intra-annual

patterns in predicted d18O values predominantly followed the

annual cycle in bottom temperature (Fig. 2). The lowest average

values (20.06 to 1.69 %) were consistently predicted for August

and September (the warmest months) and the highest (2.40 to 2.64

%) for February and March (the coldest months). Despite some

overlap in monthly stock-specific d18O maxima and minima, the

average monthly predictions remained distinct throughout the

year. Consequently, no major overlap in annual sub-stock otolith

d18O values was predicted, even when considering contrasting

scenarios for otolith growth (Fig. 3). Predicted annual ranges of

otolith d18O values differed between sub-stocks (F = 135,117; P,

0.001; df = 2), with significantly lower values (P,0.001) in sub-

stock B (1.1060.17 %), and higher values (P,0.001) in sub-stock

A (2.5860.23 %), than in sub-stock C (1.6660.16 %).

Correspondence between predicted and measured
annual otolith d18O

Measured annual d18O values all fell within predicted ranges

(Fig. 3), and as predicted, differed between sub-stocks (F = 158.3;

P,0.001; df = 2,). Annual d18O values were significantly lower

(P,0.001) in sub-stock B (1.3560.21 %), and higher (P,0.001) in

sub-stock A (2.2560.24 %), than in sub-stock C (1.6160.21 %).

When trained with the grouped otolith growth scenarios’ d18O

predictions, the LDA procedure had an overall discrimination

accuracy of 99.76% using the cross-validation procedure. For fish

of known origin, 96.70% correct sub-stock identification was

attained. The only misclassification belonged to female C-6

(Table 1), wrongly assigned to sub-stock B.

However, differences in measured annual otolith d18O values

between sub-stocks were greater than predicted from their

temperature and salinity profiles, with mismatches between

measured annual and predicted d18O values, notably for sub-

stocks A and B (Fig. 3). This may be partly explained by

differences in annual otolith growth patterns among sub-stocks

since OG1, OG2, and OG3 each produced different stock-specific

annual estimates (Fig. 4). If so, our results suggest that fish

predominantly follow OG1 in sub-stock A, OG3 in sub-stock B,

and OG2 in sub-stock C.

Training the LDA using only predicted d18O values from the

best matching growth scenario for each sub-stock (i.e. OG1 for

sub-stock A, OG3 for sub-stock B and OG2 for sub-stock C) raised

overall discrimination accuracy to .99.99% using the cross-

validation procedure (Fig. 4), but did not, improve identification in

the 27 measured annual d18O values (96.70%), due to B-3’s

incorrect assignment to sub-stock C (Table 1). Furthermore, half

of the measured annual values fell outside the 75% predictions

irrespective of the sub-stock (Fig. 4). This provides further

evidence of a slight mismatch between measured and predicted

values for all three sub-stocks. For sub-stock C this could arise as a

result of OG1 growth rather than OG2 in some individuals tested.

However this would not explain the higher and lower than

predicted d18O values observed for sub-stock A and B. Compar-

ison of measured and predicted annual otolith d18O values in the

Figure 2. Fish environmental experience. Annual cycle of mean (6 SD) salinities (a) and temperatures (b) predicted for the 3 plaice sub-stocks
(A, B and C) in the North Sea, based on all the individual locations observed for each month and corresponding environmental conditions derived
from the General Estuarine Transport Model for the period 1997–99.
doi:10.1371/journal.pone.0108539.g002
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seven fish returned with full annual DST records (Table 1)

confirmed this pattern. Measured annual d18O values were

slightly, yet consistently, higher (of 0.09% in A-1, 0.31% in A-2,

0.22% in A-3 and 0.11% in A-4) than those predicted from

concomitant in situ temperature measurements in sub-stock A,

irrespective of the otolith growth scenario used. Conversely,

measured annual d18O was .0.13% lower than predicted in B-3.

For sub-stock C, the difference between measured and predicted

Figure 3. Overall annual otolith d18O predictions per sub-stock. Predicted annual d18O values (in white), obtained by applying all 3 plausible
otolith growth scenarios to the monthly d18O derived from the stock-specific temperature and salinity conditions experienced (30,000 simulations),
and corresponding measured annual d18O values (circles) per sub-stock. In each boxplot, the box includes 50% of the data and the whiskers 100%,
with the bold line within the box indicating the median. For each sub-stock, the individual otolith annual d18O values of the fish returned with a full
annual DST record (c.f. Table 1) are indicated in grey.
doi:10.1371/journal.pone.0108539.g003

Table 2. Monthly otolith d18O values (in %) predicted for the 3 sub-stocks over the 3-year study-period (1997–99).

Month Sub-stock B Sub-stock C

1 2.46 (2.2522.59) 2.35 (2.0422.59) 2.22 (2.0022.44)

2 2.64 (2.3422.75) 2.45 (1.8122.70) 2.51 (2.3722.65)

3 2.64 (2.0522.79) 2.40 (1.7922.71) 2.48 (2.1522.63)

4 2.52 (2.3122.64) 1.96 (0.5422.47) 2.26 (2.0622.36)

5 2.40 (2.0522.56) 1.67 (1.1322.07) 1.79 (1.6221.99)

6 2.20 (1.8322.42) 1.13 (0.7621.60) 1.21 (0.9821.39)

7 1.98 (1.4822.43) 0.47 (-0.3921.11) 0.63 (0.4220.91)

8 1.69 (0.7622.32) -0.06 (-0.7720.21) 0.38 (0.0320.83)

9 1.41 (0.7722.06) -0.32 (-0.7320.04) 0.57 (0.1621.61)

10 1.52 (0.9322.08) 0.36 (0.0620.65) 0.91 (0.5521.77)

11 1.58 (1.3221.85) 1.15 (0.9121.30) 1.26 (1.0021.52)

12 2.11 (1.9422.35) 1.93 (1.7322.04) 2.00 (1.6422.10)

For each sub-stock and month, the range (minimum - maximum) of values predicted for all the grid cells occupied is shown in italics beside the corresponding mean.
doi:10.1371/journal.pone.0108539.t002
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annual d18O values was below analytical error (,0.07%) for both

C-1 and C-2, when using OG2 and OG1, respectively.

Correspondence between predicted and measured high-
resolution otolith d18O values

The temporal patterns of high-resolution otolith d18O values

measured using SIMS generally corresponded to those predicted

from concomitant monthly records of environmental conditions

(Fig. 5). However, some d18O values fell outside the predicted

range irrespective of the equation applied (i.e. that for inorganic

aragonite [2] or that for juvenile plaice [43]), confirming the slight

dissimilarities already observed between predicted and measured

annual d18O values.

When using the equation for inorganic aragonite [2], the

differences between measured and predicted d18O values were

generally small (Fig. 5 and 6), with an average of 0.2860.21% for

the three sub-stocks combined, which is similar to the 0.2%
measurement error of the SIMS analyses. Measured and predicted

d18O values exhibited a strong relationship, close to the 1:1 line

(Fig. 6). However, the differences between them exceeded 0.5% in

several individuals, irrespective of sub-stock (Fig. 6). Moreover, the

directionality of the differences between the predicted and

observed values varied among, but was consistent within sub-

stocks. Measured d18O values were significantly and consistently

higher than predicted for individuals in sub-stock A, while

individuals from sub-stocks B and C exhibited measured d18O

values significantly lower than predicted during the coldest

(February, March, April) and warmest (July, August, September)

months of the year (Fig. 5 and Table 3). These differences were

consistent with the trends observed in annual d18O values when

annual otolith growth predominantly followed OG1 in sub-stock C

(Fig. 4). Visual examination of the sub-stock C otoliths seemed to

confirm this result, as the opaque zone was not particularly wider

than the hyaline zone in several of the specimens analysed (e.g.

Fig. 5).

Predicting otolith d18O values using the juvenile plaice

fractionation equation [43] instead of that for inorganic aragonite

[2] did not reduce the difference between predicted and measured

Figure 4. Annual otolith d18O predictions per growth scenario for the 3 sub-stocks. Predicted annual d18O values (in white) were obtained
by individually applying each of the 3 plausible otolith growth scenarios (OG1, OG2 and OG3) to monthly d18O derived from the stock-specific
temperature and salinity conditions experienced (10,000 simulations per scenario and sub-stock). In each case, the white box includes 50% of the
data and the whiskers 99%, with the bold line within the box indicating the median and the circles the outlier values. For comparison, the full range
of observed annual d18O values is represented for each sub-stock (in grey, the bold line indicating the median).
doi:10.1371/journal.pone.0108539.g004
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Figure 5. Intra-annual patterns of otolith d18O variation. Multi-annual seasonal variations of adult otolith d18O records (black line with spots,
graph) measured with Secondary Ion Mass Spectrometry (SIMS) in 3 individuals representative of their sub-stock (A, B or C - see Fig. 1), shown with
matching d18O values predicted from in situ tag data using the equation of Kim et al. 2007 for inorganic aragonite (plain grey line, graph) or that of
Geffen 2012 for juvenile plaice (dotted grey line, graph). The shaded boxes (graph) indicate fish-specific range of daily tag-predicted d18O values

Field-Validation of Otolith d18O Value
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d18O values, with an average divergence of 0.4560.30% for the

three sub-stocks combined (Fig. 7). The difference between

predicted and measured d18O values for sub-stock A was reduced,

especially for minimum values corresponding to the warmest

months. However differences for sub-stocks B and C were

amplified, both for minimum and maximum annual values

(Table 3), which is the opposite trend to what one would expect

if the differences were an artefact of signal attenuation and

sampling resolution.

Discussion

To date, studies focusing on the links between otolith d18O and

environmental conditions have mainly used captive juvenile fish in

controlled tank experiments [31,36,39–43]. A small number of

studies have examined controls on otolith d18O in situ (e.g.

[6,16,25,30,38,58,59]), but were limited in their findings due to

difficulties in obtaining accurate positional and environmental

data over appropriate temporal and geographical scales. In the

current study, in situ temperature measurements, high resolution

salinity estimates and individual migration pathways have for the

first time been matched with concomitant otolith d18O records in

wild marine fish from distinct sub-stocks, providing useful insights

into natural variations in otolith d18O records of environmental

conditions at sea and the value of this natural proxy for stock

discrimination and seawater temperature reconstruction.

Otolith d18O values as "natural tags"
The release and recapture of hundreds of electronic archival-

tagged plaice has revealed important insights into plaice spatial

dynamics [60], and has here provided a unique platform to test

whether otolith d18O values can be used to derive equivalent

positional data. Based on .13,000 geolocations from .190

individual fish, simulated temperatures and salinities over a three

year period predicted significant and consistent differences in

annual otolith d18O profiles between the three plaice sub-stocks

studied. The high accuracy (.96%) in sub-stock assignment using

both measured and predicted annual d18O values confirmed the

utility of otolith d18O values as a natural tag of stock origin (e.g.

[24,26,27,58]). Moreover, the marked differences in summer

otolith d18O values between sub-stocks (Table 2) demonstrated

that, providing the ambient environment is sufficiently variable in

temperature or salinity, d18O signatures can allow broad-scale

geolocation on a finer spatio-temporal scale than is currently

applied in the management of most offshore fisheries [61]. In the

North Sea, this offers the opportunity to map meta-population

dynamics through stock identification of fish mixing on winter

spawning grounds [62].

during their time at liberty. The red arrows indicate the successive positions of otolith annuli both on the graphs and on the corresponding
photographs, i.e. the detailed views of the longitudinal sections analysed with SIMS (black line). Maps show the reconstructed movements of the fish
during tag recording time, with the black letters indicating successive geolocations between fish release and recapture in each case.
doi:10.1371/journal.pone.0108539.g005

Figure 6. Sub-stock specific vital effects? Measured vs. predicted intra-annual otolith d18O values obtained for the 4 fish per sub-stock analysed
with SIMS. In each case, intra-annual otolith d18O measurements made during DST recording time were matched with best corresponding monthly
d18O values predicted from concomitant in situ tag temperature records using the equation from Kim et al. (2007). The grey area around the 1:1 line
represents the analytical error using SIMS. NB: the number of measurements differs between sub-stocks due to inter-individual differences in tag
recording times. For all individuals, minimum predicted monthly d18O values were consistently observed in the summer (in July, August or
September) and maximum ones in the winter (in February or March).
doi:10.1371/journal.pone.0108539.g006
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At a finer scale however, our results suggest that this approach

to movement reconstruction should be applied with some caution,

even in fully marine environments. As stated by many authors (e.g.

[6,27,42]), oxygen isotope incorporation into fish otoliths is

temperature-dependent, yet largely driven by water d18O values,

which in turn vary with salinity. Because ocean salinity can

fluctuate locally and regionally, especially in the coastal zone [3],

this can affect otolith d18O values, and not only for species

migrating between brackish or hypersaline habitats [14,22,63]. As

shown here, even limited marine salinity variations (e.g. from 33 to

35) can generate pronounced differences in otolith d18O values

among fish experiencing similar temperatures during the year (e.g.

sub-stock B vs. C). Except for active vertical movement during

migration and spawning, the tagged plaice in the current study

were largely at, or close to, the seabed [64]. As such, baseline

knowledge of bottom temperature and salinity could generate

d18O "isoscapes" [65] as a predictor of potential marker efficacy

for this species. However, vertical migrations could bias d18O-

based estimates of individual geolocation in other fish species due

to vertical gradients in water temperature and salinity [53,66].

Our results also demonstrate the importance of intraspecific

variations in otolith growth in the generation of annual otolith

d18O values in the wild. The differences in measured annual d18O

ranges among sub-stocks using the fractionation equation for

inorganic aragonite [2] were consistently greater than predicted

when assuming similar otolith growth (i.e. under any of the three

growth scenarios), suggesting inter-population variations in otolith

deposition rates and/or the occurrence of vital effects (see below).

Sub-stock and season-specific weighting of monthly d18O values

improved our predictions, but these latter still did not perfectly

match measured annual d18O values. The timing of otolith edge

deposition in North Sea plaice varies with area, fish age and year

[55]. Therefore, errors in the coupling of otolith growth bands

with corresponding DST records cannot be fully excluded.

Similarly, otolith growth may have followed different trajectories

to the scenarios applied for annual d18O predictions. However this

does not explain the divergence between measured and predicted

seasonal d18O values observed in individual fish (e.g. Fig. 7).

For sub-stocks A and C at least, measured otolith d18O values

diverged from predicted, even when using in situ temperature

records and accounting for potential errors in fish positioning and

salinity modelling (Fig. 7). This possibly reflects departure from

equilibrium during oxygen isotope fractionation in North Sea

plaice otoliths, at least for certain times of the year. If so, our

results furthermore suggest that the nature of this departure might

differ among sub-stocks. Ideally, multi-stock validation studies

across a wide range of ontogenies are required to establish a more

comprehensive understanding of the relationship between fish

metabolism and otolith d18O.

Possible sources of error in d18O predictions
In the current study, we used measured and modelled

environmental data to predict otolith d18O values from estimated

fish position. We are confident that our approach generally

produced robust predictions of otolith d18O values, both for

individual fish and for sub-stocks. However, in generating unique

in situ validation measures, we acknowledge two main inherent

and unavoidable potential sources of error.

The first of these involves estimating fish location (geolocation)

and the estimation of corresponding environmental data when no

in situ measurements were available. The Tidal Location Method

(TLM) is estimated to be mainly accurate to within 10 to 40 km

according to time and location [47]. When combined with

GETM’s 20 km model grid cells of the GETM, this could

attenuate localized temperature and salinity variations experi-

enced by individual fish, resulting in inaccuracies in environmental

predictions. However, GETM has proven to be extremely

powerful at reproducing three-dimensional patterns of tempera-

ture and salinity [52], and the salinity range is very narrow (34.7–

35.4) in most offshore areas of the North Sea [53]. Therefore,

these two sources of error, even when combined, would only have

limited impact (,0.2 %) on the majority of monthly otolith d18O

predictions (Figure 7). Exceptions could include the few individ-

uals migrating to the localized areas of the central (at approx-

imately 3uE, 57uN) or the eastern North Sea (close to the Dutch

coast) penetrated by fresh waters from the Baltic Sea, and the Elbe

and Rhine Rivers [53]. This only has potential to affect individuals

from sub-stocks A and C during spawning migrations, but could

potentially affect individuals from sub-stock B all year round

(Figure 2a and 7b).

The second main potential bias in our d18O predictions lies in

the estimation of water d18O from salinity. The equation we used

[53] has been developed specifically for the North Sea, based on

d18O measurements from surface and bottom water collected over

a 3-year period over the entire North Sea basin, and is in

agreement with all the similar equations or d18O measurements

Table 3. Average (6SE) differences between measured and predicted extreme d18O values (in %) obtained for the 3 sub-stocks
when using either the fractionation equation for inorganic aragonite [2] or that for juvenile plaice reared under controlled
conditions [43].

Sub-stock A

Minimum d18O 0.2160.03 (*) 0.0160.03 (ns)

Maximum d18O 0.3360.03 (***) 0.2360.02 (***)

Sub-stock B

Minimum d18O 20.3660.09 (*) 20.7160.09 (*)

Maximum d18O 20.3460.03 (**) 20.4760.03 (**)

Sub-stock C

Minimum d18O 20.3860.03 (**) 20.7460.03 (**)

Maximum d18O 20.3960.03 (**) 20.5260.03 (**)

Significant differences, based on unilateral Wilcoxon tests for paired samples, are shown at P,0.05 (*), P,0.01 (**) or P,0.001 (***).
doi:10.1371/journal.pone.0108539.t003
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previously made in this area (e.g. [67,68]). We are confident

therefore, that our dataset is largely accurate. The d18O salinity

relationship can however be affected by localised inputs from the

Rhine and Elbe Rivers [53]. As a result, any errors in our

estimations will, again, be most pertinent to sub-stock B.

Otolith d18O values as temperature proxies
The first major requirement for temperature assessment using

carbonate d18O values is constancy in the isotopic composition of

the surrounding seawater [69]. Few authors have evaluated the

potential error in temperature estimations from otolith d18O

values due to salinity variations within their study area [6,9], and

this factor is often overlooked. Offshore salinity is generally

assumed to be constant, both spatially and temporally, with a

mean oceanic water d18O value applied to all temperature back-

calculations (e.g. [8,14,70]). Yet, even in offshore environments,

water salinity and d18O are never fully constant [53,66]. Due to

water stratification, vertical movements of fish are likely to

exacerbate these variations [12]. Salinity will have greatest

influences on water d18O values at high latitudes and in coastal

seas with high altitude catchments [28]. However, our results

emphasise the influence of even small fluctuations in salinity,

whereby salinity changes of just 1 sufficiently modified the water

isotopic value in our study area to bias local temperature estimates

by 1.3uC. Depending on the equation used to derive water d18O

values from ambient salinities, this difference could increase to

2.5uC, e.g. when using the North Atlantic equation [71]. Where

ever possible, accurate salinity estimates should therefore be used

when reconstructing water temperature using otolith d18O values.

Ideally, direct measures of water d18O would be used, since pH

variations can also modify water isotopic values [72]. This is not

the case in the present day North Sea, where surface and bottom

water d18O measurements vary consistently with salinity through-

out the basin [53]. However pH in other modern oceans can vary

Figure 7. Uncertainty around salinity estimates do not explain d18O offsets. Potential errors due to salinity estimation from fish geolocation
with GETM on the predictions of monthly d18O values for sub-stocks A (a), B (b) and C (c), when using the equation for inorganic aragonite (Kim et al.
2007). For sub-stock A, predictions using the equation for juvenile plaice (Geffen 2012) are provided for comparison (a’). Spots indicate successive
intra-annual otolith d18O values (with vertical bars showing analytic error with SIMS) during DST recording time for a representative fish per sub-stock
(cf. Fig. 5). Matching values predicted from in situ tag temperature data, combined either with corresponding individual daily GETM salinity estimates
(black solid line), or with the minimum and maximum daily salinity GETM estimates obtained monthly over the full 3-year distribution range of the
sub-stock (grey dotted lines).
doi:10.1371/journal.pone.0108539.g007
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from 7.6 to 8.4 [73], potentially shifting water d18OVSMOW by

,1% at 25uC [72]. More substantial variations in ocean pH have

occurred over geological timescales, potentially biasing paleotem-

perature reconstructions by several uC [72].

The second major prerequisite in temperature reconstructions

using otolith d18O values is that deposition of oxygen isotopes in

otoliths is in equilibrium with ambient d18O, or that any departure

from equilibrium is at least predictable [42]. To date, relatively

few studies have investigated the temperature-d18O fractionation

relationship for fish otoliths, either under controlled aquarium

conditions [31,39–43,74] or in the wild [6,25,30,38,58,75,76]. Of

these few studies, most have reported linear temperature-

fractionation equations with slopes statistically indistinguishable

both from each other and from that for inorganic aragonite [2,77]

and have concluded therefore that oxygen isotopes in fish otoliths

are deposited at near equilibrium with ambient water. However a

common cross-species temperature-otolith d18O fractionation

relationship has yet to be defined, the various slopes and intercepts

values proposed so far resulting in differences in the estimated

temperature of up to 6.1uC (using the equations of [41] and [30]).

The difference in slopes and intercept estimates among studies are

generally attributed to failure to correctly estimate water

temperature or d18O values, or to instrumental artefact (e.g.

[42,43]). However, it has also been suggested that they may reflect

physiological ("vital") effects on oxygen uptake, transport and

incorporation due to inter-specific differences in physiology and/

or adaptation to local environmental conditions [30,36].

Potential for vital effects to modify otolith d18O values
Vital effects influencing temperature-d18O fractionation, either

kinetic or metabolic, have been implicated in otolith formation by

several authors (e.g. [30,31,36,37]). However their impacts on

otolith d18O signatures is difficult to evaluate, as the two principle

mechanisms covary, through temperature’s influence on both fish

metabolism [78] and otolith precipitation rate [79,80]. To date,

experimental studies investigating the influence of vital effects on

the otolith d18O of juvenile fish [31,39–43,74] all concluded that

otolith d18O was driven mainly by ambient temperatures, and

largely independent of fish metabolism [42,43,74]. Yet, d18O

heterogeneity across temperature-salinity combinations was con-

sistently observed, commonly ranging between 0.5 to 1.5 % for

the same rearing conditions (e.g. [39–41,43,74]), equating to

2.3uC–6.1uC differences in temperature estimates (based on the

equation of [2]). This variation may reflect d18O disequilibrium in

the otoliths of some, if not all, the fish investigated. If so, then the

influence of vital effects on otolith d18O signatures have been

largely overlooked to date, as free-ranging fish from genetically

distinct stocks will experience more substantial environmental and

metabolic variability.

Studies directly investigating the relationship between otolith

d18O values and temperature in wild fish have suggested not only

inter-specific physiological influences on temperature-otolith d18O

fractionation (e.g. [41–43]), but also among life-stages and

populations of the same species [30,38,76]. This conclusion is a

logical one, given that body oxygen supply mechanisms and

associated tissue, cell and molecular functions are generally

temperature adapted, especially in ectotherms like fish [78].

Physiological performance declines on either side of the optimal

thermal window, with extreme temperatures resulting in oxygen

limitation, hypoxemia and transition to anaerobic mitochondrial

metabolism [81–83]. This may explain why several studies show

non-linear relationships for otolith temperature d18O fractionation

[31,42,84,85]. However, in experiments where only a limited

portion of the metabolic temperature range is represented and

physiological differences between individuals are constrained, the

temperature-otolith d18O fractionation may appear to be linear.

Our results bear out this possibility, and further support the idea

that species-specific temperature-otolith d18O fractionation rela-

tionships may vary with fish physiology linked to their thermal

tolerances. Acknowledging the uncertainties resulting from

analytical imprecision or inaccurate temporal matching of

measured and predicted annual d18O profiles, the fractionation

equation of [43] for juvenile plaice produced realistic estimates of

otolith d18O for the summer growth of sub-stock A, and the spring

and autumn growth of sub-stocks B and C (Figure 5). Oxygen

isotope fractionation in our adult free-swimming plaice within the

9–14uC thermal window therefore apparently corresponded with

that of juveniles maintained between 11 and 17uC [43]. However,

errors in otolith d18O prediction using the equation of [43] across

stocks when temperatures were below 9uC and above 14uC
(Figure 6), especially the sub-stock specific differences in otolith

d18O shifts observed in all of our subject individuals, could not be

attributed to any systematic calculation bias (Figure 2 and 7). They

suggest non-negligible departure from the juvenile plaice equation

beyond the 9–14uC thermal window in adult plaice, with further

potential for sub-stock variation in "vital" effects.

Although the occurrence of such "vital" effects requires

experimental confirmation, this interpretation is largely consistent

with current knowledge of plaice physiology [86] and temperature

adaptation in fishes [83,87]. Indeed, while temperature-dependent

physiological principles are unlikely to vary across life stages,

functional implications differ between juveniles and adults [78].

Growth optima are expected at lower temperatures in larger fish,

reflecting the fact that upper heat limits shift downward [78].

Restricted oxygen supply at extreme temperatures also occurs

more readily in adults due to larger body size and reproductive

capacity [78]. Likewise, plaice demonstrate a marked decrease in

optimum temperature between juvenile and adult stages, from 18–

20uC to around 10uC [86]. Because this ontogenetic shift is likely

to be accompanied by a downward shift and a reduction of the

thermal window allowing oxygen supply [78], it is not surprising

that otolith d18O fractionation at 9–14uC in our mature females

corresponded to that of juvenile plaice maintained at 11–17uC
[43]. Departures from linear otolith d18O fractionation beyond

this thermal window are also plausible. Only fish from sub-stocks B

and C experienced temperatures above 14uC (in July-September)

but, in agreement with expected kinetic "vital" effects on oxygen

fractionation [35,78], otolith d18O values were systematically

lower than predicted for these warmer periods. Conversely,

temperatures below 9uC were experienced by fish from all three

sub-stocks (from December to April in sub-stocks B and C and

from December to June in sub-stock A). However, while observed

otolith d18O values were lower than predicted in sub-stock C, and

probably also sub-stock B, they were surprisingly higher than

predicted in sub-stock A. Such sub-stock differences in female

plaice metabolism (A vs. B and C), at least within the 4–9uC
thermal range, are compatible with the metabolic cold adaptation

(MCA) hypothesis, which predicts higher metabolic rates of

ectotherms from cold environments than those of their more

temperate counterparts [88,89]. Indeed, physiological differences

have been demonstrated in same-species populations along a

latitudinal temperature gradient [78,90]. The resulting popula-

tion-specific patterns of thermal tolerances mean that different

metabolic rates would be predicted for different demographic

components of the same species when exposed to the same

temperature regime [82,91,92]. This may partly explain the

differences observed between sub-stocks, as sub-stock A has a more

clearly delimited northern distribution than B and C (Figure 1).
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However, all of the kinetic vital effects described for oxygen

isotope fractionation thus far predict that lower metabolic rates

should result in higher d18O signatures [35,79,80]. In light of the

MCA theory, we would therefore expect departure from d18O

equilibrium at temperatures below 9uC in plaice to result in higher

than expected d18O values for all sub-stocks, with a maximum in

the southern sub-stocks (i.e. B and C) due to a more marked

decrease in metabolic rate. While measured d18O values at 5uC
were indeed higher than predicted for sub-stock A, the opposite

was observed for sub-stocks B and C (Figure 6). Failure to

adequately sample those growth bands corresponding to the

coldest months in the otoliths of the southern sub-stock females

may partly be responsible for the observed pattern. Indeed, female

North Sea plaice cease feeding for up to five weeks between

December and April, due to limited metabolic scope that

precludes the simultaneous oxygen demands for spawning and

feeding metabolism [49,57]. Therefore, dilution of the highest

d18O signatures (expected January to March, Table 2) by that of

warmest months because of reduced otolith growth during

spawning might have resulted in the lower than expected otolith

d18O values measured in sub-stock B and C. However, differences

in physiology in sub-stock A vs. B and C during the winter, with

potential incorporation of metabolically-derived O16 in the otolith

of the females of the two southern sub-stocks cannot be fully

excluded. If so, the isotopic composition of the otolith organic

protein matrix could be involved, since it is mainly comprised of

highly oxygenated amino acids [93].

Conclusions

This study confirmed that, given a reliable isoscape, otolith

d18O values can be a highly accurate, low-cost "natural tags" for

stock discrimination and broad-scale geolocation of fish, thereby

complimenting the results from archival tagging and other

population descriptors. However, our results identified patterns

that may represent life stage- and population-specific vital effects

during oxygen isotope uptake, transport and/or incorporation into

otolith aragonite. This casts doubt on the accuracy of past

temperature estimates based on otolith d18O from wild fish, even

where realistic estimates of water salinity or d18O values were

available. We therefore recommend intra-specific validation

experiments, involving both different life-stages and (sub-)popula-

tions over broad temperature ranges. Indeed, our proposed

approach could be transposed to many other species and locations

and provide valuable data for conservation and sustainable

fisheries management. In many transitory model systems, the

relative changes in seawater temperature or salinities are

sufficiently pronounced so as to produce markedly distinct otolith

d18O signatures and therefore make the accuracy of the estimation

of the temperature-d18O relationship irrelevant. Where accuracy is

paramount however, the possibility of intra-specific vital effects on

oxygen fractionation should be investigated to preclude any bias in

the geographical or climatic interpretations of the otolith d18O

signals.
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