CHAPTER 5
Analysis of Otolith Microstructure Data

Steven E. Campana

Department of Fisheries and Oceans, Marine Fish Division
Bedford Institute of Oceanography, P.O. Box 1006
Dartmouth, Nova Scotia, Canada B2Y 4A2

Cynthia M. Jones

Applied Marine Research Laboratory, Old Dominion University
Norfolk, Virginia 23529, USA

Correct citation: Campana, S.E., and C. M. Jones. 1992. Analysis of otolith microstructure data, p. 73-100. In D. K. Stevenson and S. E. Campana [ed.]
Otolith microstructure examination and analys:s. Can. Spec. Publ. Fish. Aquat. Sci. 117.

Introduction

The preparation and interpretation of an otolith is
only the first step in the extraction of useful informa-
tion about a fish. It is understandable that the techni-
cal difficulties associated with otolith microstructure
examination can occupy much of a researcher’s time.
However, the analysis of the resulting data is often
given so little attention that much of the information
acquired so painstakingly is effectively lost. Indeed,
many publications reporting otolith data contain only
the size-at-age data, perhaps in the form of a scatter-
plot, thus ignoring what is often more interesting and
useful information. Of course, most analyses, even
those as simple as growth rate calculations, require
complete and representative sampling of all of the rel-
evant cohorts/life history stages (see Butler, this vol-
ume). The intent of this chapter is to highlight the
most useful and powerful applications of otolith
microstructure examination, and in so doing, attempt
to encourage a more complete analysis of otolith-
based data on a routine basis. Many of the analyses
are not particularly difficult to undertake, but merely
require some forethought as to the best way to pro-
ceed. Thus we shall also offer our views on the most
appropriate way to approach and complete each anal-
ysis. Examples are given wherever possible.

Many of the applications which make use of otolith
microstructure examination have analogs in other
areas of fisheries science. Obvious examples include
the estimation of age and growth rate, both of which
have long been studied at the yearly level. However, a
typical sequence of daily growth increments lends
itself to most applications much better than those at
the yearly level, largely because of the longer and
temporally more exact sequence of marks in each
otolith. In addition, applications such as hatch date
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analysis are almost unique to otolith microstructure
studies. In this chapter, we shall review all of the
major applications of otolith microstructure data, but
focus our discussion on the analyses not generally
found in other fields of research. The simulations and
discussion of hatch date analysis are new, reflecting
the still-evolving nature of this type of analysis.
However, much of the remaining information has
been presented elsewhere; this chapter simply serves
to bring it all together in a coherent form, much of it
for the first time.

Age Estimation

Conversion of Increment Counts to Age Estimates

Given a life history stage in a species in which
daily increment formation has been validated (see
Geffen, this volume), the number of daily increments
must be proportional to, but not necessarily equal to,
the age of the fish. Since the inner-most increment
does not necessarily form at hatch, experimentation or
observation is required to determine the age at which
the first increment is formed. Of course, increment
counts can be initiated at any otolith landmark to
which an age can be reliably and consistently
assigned; neither the inner-most increment nor the
hatch check need be used. One example of an alter-
nate landmark is that of a check formed at mouth-
opening (Lagardére and Chaumillon 1988).
Irrespective of the landmark used, age is then calcu-
lated as the sum of the age at landmark formation and
increment count distal to that landmark. While fish
age is the usual objective of otolith microstructure
examination, individual increments can also be inter-
preted in terms of date of formation, through knowl-
edge of the date of sampling (=date of formation of



the marginal, or last-formed, increment). Dated incre-
ments are proving to be of increasing value to analy-
ses cross-correlating environmental factors to the
otolith growth sequence (e.g., Methot 1981; Campana
and Hurley 1989; Suthers et al. 1989).

The estimation of age from daily increment counts
is simple in principle, but the practice is confounded
by the errors and uncertainties associated with
microstructural examinations (see Neilson, this vol-
ume, and Campana, this volume). To some extent, the
ageing uncertainties can be reduced through examina-
tion of multiple otoliths. All teleosts have three pairs
of otoliths, of which two pairs are often interpretable.
Since increment counting error is at least partially due
to preparation artifacts, examination of both otoliths
from a given pair can aid in reducing the variance
(increasing the precision) of each age estimate. Where
it can be demonstrated that other otolith types contain
the same age information (or can be calibrated to the
same age), more than one otolith pair can be read to
further increase precision (Campana and Hurley
1989). Of course, peculiarities in the otolith
microstructure attributable to fish growth will be
reflected in all of the otoliths, and that source of error
is unlikely to be reduced by multiple readings. It
should also be noted that readings of multiple otoliths
from a single fish are not equivalent to the same num-
ber of readings from a single otolith; the latter will
reduce the variance attributable to counting error
while the former will reduce the variance due to both
counting and preparation error.

A single best estimate of age from a given fish will
result from multiple readings of each of several
otoliths, at least where possible. However, an overall
average of all of the readings will seldom be appropri-
ate. A more appropriate age estimation procedure
involves: (1) the determination of the single “best”
estimate of increment count for each otolith, (2) pool-
ing of the increment counts from a given otolith type,
(3) converting increment counts from each otolith
type to age estimates, and (4) pooling the results from
the otolith types. At least, this is the most appropriate
procedure in theory. In practise, the time and effort
involved in reading multiple otoliths from a single
fish must be balanced against the benefits of increas-
ing the number of fish which are examined. As a gen-
eral rule of thumb, the examination of two otoliths
(usually of a single otolith type) from each fish
appears to be a useful compromise between within-
fish precision and overall sample size.

The single “best” estimate of increment count from a
given otolith may be the mean of multiple counts if all
counts were considered equally reliable. Use of a
median, rather than a mean, reduces the influence of
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single, aberrant counts. However, since otolith readers
often give higher credence to certain readings, some
form of weighting in terms of reliability is often pre-
ferred. Weighting can be as described below, or can be
slightly more subjective through selection of the single
count with which the most confidence is associated. In
most cases, the difference between the two weighting
procedures will be minimal. After assigning a single
increment count to each otolith, a single value is calcu-
lated for each otolith type, either by averaging or
through weighted averaging. Increment counts from
each otolith type are then converted to age estimates
using the appropriate conversion (e.g., age = lapillar
count + 2). The final stage is the averaging (weighted
or unweighted) across otolith types. The mathematical
algorithm for the single best increment count (C,) from
the jth (first or second) otolith of the tth otolith type
(eg. sagitta, lapillus, or asteriscus) is:

(ﬁX,x W)
-
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where R represents the number of times that the
otolith was counted, and W, is the weight given to
each count (X,). Although statistical weights are often
calculated as the inverse of the variance, there is no
variance associated with a single count. A more useful
approach here is to weight on the basis of perceived
confidence in the otolith reading; an arbitrary scale
from 1 (little confidence) to 5 (unambiguous count)
for each otolith is one such approach. Calculation of
the mean increment count for a given otolith type is a
simple variant of Equation (1), whereby weights are
either assigned to each otolith based on confidence, or
the weights are assumed to be equal, resulting in a
simple mean. After converting each of the otolith type
increment counts to age estimates, the final
(weighted) mean is then calculated across otolith
types. It is important to note that the above procedure,
whereby (weighted) means are calculated at each
stage, is not equivalent to a (weighted) mean of all of
the readings combined. As for the use of weighted
means, weighting appears to be most important in the
first two stages (calculation of the best increment
count for each otolith and otolith type); unless one
otolith type is clearly superior to the other, a simple
mean across otolith types is probably sufficient.
Consider the following example, based on three
readings each of two sagittae and one lapillus (one
lapillus was lost during preparation). Confidence ranks
were assigned on a scale of 1 (low confidence) to 5
(high confidence). Assume that increment counts were
initiated at a check which formed one day after hatch:



Weighted
Count Rank Count Rank Count Rank mean
Sag 1 20 5 18 4 28 1 20.0
Sag 2 22 4 23 3 19 4 21.2
Lap 1 19 4 20 4 21 4 20.0

Assuming that Sag 1 and Sag 2 were comparable in
ease of interpretation, the mean Sag count would be
20.6. Converting the Sag and the Lap counts to ages
(count + 1), and taking the mean, results in an age
estimate of 21.3 d. Note the difference between this
estimate and the simple mean of all of the above read-
ings (=21.1 + 1 = 22.1 d). Note also that the otolith
types were equally weighted in the calculation of the
final age estimate, despite the fact that there were two
sagittaec and only one lapillus. Equal weighting is
appropriate if the two otolith types differ in their ease
of preparation and/or interpretation, yet there is no
basis for considering one otolith type more reliable
than the other. Where one otolith type is considered to
be more reliable than the other, it is probably best to
age only the reliable pair.

Accuracy and Precision

Age estimates are most valuable when they are both
accurate and precise. However, accurate estimates need
not be precise, and vice versa (Campana and Moksness
1991). Accuracy refers to the proximity of the estimate
to the “true” value, while precision refers to the repro-
ducibility of the individual measurements. Thus a mean
age can be accurate (close to the truth) while the indi-
vidual observations are imprecise (vary widely).
Conversely, and this is often the case in ageing studies,
age estimates can be precise (highly reproducible,
either within or among readers) but not necessarily
accurate. Tests of accuracy require an independent and
absolute means of age determination (see Geffen, this
volume); for instance, accuracy has not been demon-
strated if age estimates from otoliths and vertebrae con-
cur. However, indices of precision are easily generated,
and they can provide useful information concerning
sources of error in an ageing study. Common applica-
tions include comparisons among age readers and age-
ing methodologies (Secor and Dean 1989). They can
also be used to judge the relative difficulty of ageing
different species, and to reject samples of questionable
reliability (Secor and Dean 1989; Schultz 1990).

Traditional indices of precision are of little value to
otolith microstructure studies, and in any event, have
also fallen out of favour in ageing studies at the annu-
lar level. Specifically, measures of percent agreement
vary substantially both among species and among
ages within a species. Beamish and Fournier (1981)
illustrated this point by noting that 95% agreement to
within one year between two age readers of Pacific
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cod (Gadus macrocephalus) constituted poor preci-
sion, given the few year classes in the fishery. On the
other hand, 95% agreement to within 5 years would
constitute good precision for spiny dogfish (Squalus
acanthias), given its 60-yr longevity. Thus, Beamish
and Fournier (1981) recommended the use of average
percent error (APE), defined as:

1X, - X, |
RZ

X

where X, is the ith age determination of the jth fish, X; is
the mean age of the jth fish, and R is the number of
times each fish is aged. When averaged across many
fish, it becomes an index of average percent error.
Chang (1982) agreed that APE was a substantial
improvement over percent agreement, but suggested
that the standard deviation be used in Equation (2)
rather than the absolute deviation from the mean age.
The resulting equation produces an estimate of the coef-
ficient of variation (CV), and unlike Equation (2), does
not assume that the standard deviation is proportional to
the mean. The CV is expressed as the ratio of the stan-
dard deviation over the mean, and can be written as:
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2 RI
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Equation (3) is the CV of the age estimate for a single
fish (jth fish). As with Equation (2), it can be aver-
aged across fish to produce a mean CV. Both
Equations (2) and (3) produce similar values for pre-
cision (Chang 1982); however, because of the absence
of an assumed proportionality between the standard
deviation and the mean, the latter is statistically more
rigorous and thus is more flexible. The index of varia-
tion proposed by Lai et al. (1987) is probably the
same as Equation (3), although there appears to have
been a typographical error in its presentation. In some
species, both the APE and the CV will decrease with
age until the juvenile stage, reflecting the relative dif-
ficulty of precisely ageing very young larvae (e.g.,
Savoy and Crecco 1987; Campana and Moksness
1991). However, it is important to note that both APE
and CV will decrease with age, even if the absolute
counting error remains constant. For instance, count-
ing variability of +1 in a 10-d old larva corresponds to
a CV of about 9%, while the same variability in a 1-d
old larva will result in a CV close to 90%. Therefore,
comparisons of age precision between two groups will
not be comparable if they contain substantially differ-
ent age distributions.

2) 100% X

3) 100% X

Age-Length Keys

The age determination of large numbers of fish,
whether at the daily or the annual level, almost invari-



ably requires some form of subsampling. Since fish
lengths are far easier to measure than are ages, sub-
sampling can be used to estimate the age of a large
number of fish for which only length is known, based
on a smaller sample for which both age and length are
known. Mean age-at-length can be calculated through
inverse regression of a linear growth curve, and then
applied to a sample of known length (Bolz and Lough
1988). However, such an approach ignores the inher-
ent variability in size-at-age, and can be used for only
the most general of applications. Age—length keys,
which are essentially contingency tables of age cate-
gories by length categories, use more of the
age-length information, and are commonly applied in
commercial fisheries situations. There is a large litera-
ture on the use and abuse of age-length keys (Kimura
1977; Westrheim and Ricker 1978; Doubleday and
Rivard 1983), which will not be reviewed here. An
important assumption underlying the appropriate use
of age-length keys is that they are drawn from the
same population, at the same time and place, as the
larger length—frequency samples. Since serious error
can arise if this assumption is ignored, age-length
keys will generally not be transferable across seasons,
years, populations, or environments.

Age-length keys are most commonly prepared in
one of two ways. Both approaches are based on two-
stage sampling (Cochran 1963) in which a large
length—frequency sample is subsampled for age deter-
mination. Subsampling can either be based on a ran-
dom sample of the length—frequency sample, or strati-
fied on the basis of length category (e.g., a random
sample is aged from each length category). Length-
based stratification is generally preferred since it
avoids the problem of underrepresentation of the old-
est, least abundant fish (Fournier 1983). Subsample
sizes within each length category can either be fixed,
or proportional to the number of fish in that length
category (Kimura 1977). Whichever approach is
adopted, it is important that the range of length cate-
gories in the key span the same range as that observed
in the length sample.

Consider the following simple example, whereby an
age-length key derived from a small subsample is used
to prorate a larger length—frequency sample (LF):

Length Age Category
Category 5 6 7 8 9 10 Sum LF
10 2 - = = — — 2 20
12 1 3 2 — — — 6 30
14 - 2 7 5 1 — 15 50
16 — — 2 4 3 1 10 40
Sum 35 11 9 4 1 33 140
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The vector LF is multiplied by the proportion at age
in each key length category, resulting in:

Length Age Category

Category 5 6 7 8 9 10 Sum
10 20 - — — — — 20
12 5 150 100 — — — 30
14 — 6.7 233 167 33 — 50
16 — — 8.0 160 120 4 40
Sum 25 21.7 423 327 153 4 140

Length at age comparisons are most commonly
made with parametric tests, although there are non-
parametric equivalents for most of the two-sample
tests. If the relationship between length and age is lin-
ear (or can be so transformed), and given the other
assumptions of an ANOVA, an analysis of covariance
(ANOCOVA) can be a powerful test of differences
among samples (e.g., Secor and Dean 1989; Thorrold
and Williams 1989). Note that a two-sample
ANOCOVA is not necessarily equivalent to a ¢-test of
the regression slopes of the two samples. A compari-
son between regression slopes assumes similar inter-
cepts; if the latter are dissimilar, interpretation of
slope differences can be difficult. ANOCOVA is bet-
ter suited to dealing with this type of problem.

In all statistical analyses, but particularly those
mentioned above, it is important to consider both sig-
nificance and power before reaching a conclusion.
Statistical significance, the probability of rejecting the
null hypothesis (of no difference) when it is in fact
true, is rather widely understood. Thus, statistically
significant differences among samples are usually
easy to interpret. However, non-significant differences
may either be due to an actual similarity between the
samples, or to low statistical power. The latter may
arise from low sample size or high variability in the
data, among other things, which can serve to hide a
real difference between the samples. Thus, it is not
appropriate to conclude, or even suggest, that there
are no differences between the samples unless the sta-
tistical power can be demonstrated to be high.
Analyses with low statistical power are widespread,
and inferences drawn from them have often obscured
the truth (Rice 1987; Peterman 1990).

Age Estimation by Numerical Integration of
Daily Increment Widths

To this point, the discussion has been focused on the
estimation of age in young fish, primarily larvae and
juveniles. While some workers have attempted, with
varying degrees of success, to age adult fish through
daily increment counts (Pannella 1971; Brothers et al.



1976; Radtke 1984), adult fish otoliths are generally
conceded as being both difficult and tedious to prepare
and interpret. In addition to the possibility that daily
increment formation becomes intermittent in old fish as
somatic growth slows (Campana and Neilson 1985),
the logistical problems of preparing a large otolith for
microstructural examination can leave extended
sequences of daily increments uninterpretable. Where a
presumed annular pattern is present, daily increment
counts between the nucleus and first annulus have been
successfully used to verify the nature of the first annu-
lus (Victor and Brothers 1982; Morales-Nin 1988). The
nature of the subsequent annuli remains problematic.
Despite problems with the interpretation of the
microstructure of adult fish otoliths, in cases where
otolith annuli are ambiguous or absent (e.g., in many
tropical species), and particularly if done in conjunction
with an alternate age determination technique (such as
length frequency analysis), some form of otolith ageing
can be of substantial benefit. With these caveats in
mind, Ralston and Miyamoto (1983) developed an
approach whereby the daily increment widths in an
adult fish otolith were subsampled and measured across
the interpretable sections of the otolith radius. When
put into the context of a relationship between increment
width, section width, and distance from the nucleus, the
integrated data could be interpreted in terms of daily
age at specific otolith sizes. Use of a predictive rela-
tionship between otolith size and fish size then allowed
estimates of fish size at age to be derived. While still
sensitive to extended interruptions in otolith growth,
this approach successfully circumvented problems
associated with sequences of poorly defined incre-
ments, and enhanced efficiency and productivity rela-
tive to a complete enumeration of increments.

A complete description of the numerical integration
approach is provided elsewhere (Ralston and
Williams 1989). Basically, it begins with scanning the
prepared otolith section along some predefined axis
between the nucleus and the otolith margin in a search
for unambiguous daily increment sequences. At fre-
quent but arbitrary intervals, the average width of the
daily increments is determined by measuring the axial
length of a small number of increments (~10-20) in a
sequence and dividing by the number of daily incre-
ments contained therein. In conjunction with the mea-
surement of the distance from the midpoint of the
sequence to the nucleus, an estimate of mean incre-
ment width at some otolith radius can be calculated.
This can then be used to calculate the instantaneous
growth rate of the otolith.

To estimate age, Ralston and Williams (1989) sub-
divided the data into 500 pym intervals of otolith
length, beginning at the nucleus. The selection of a
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500 pm interval was arbitrary and could be varied to
suit the species under study. Mean otolith growth rate
within each 500 pm interval was then calculated,
based on the number of increment sequences which
were present within that interval. Each within-interval
otolith growth rate (in pm units) was next divided into
500 pm to estimate the number of days needed to
complete growth through that interval. When the sum
of the interval calculations (days) for each fish was
divided by 365, an age estimate, in years, resulted.
The age estimate and observed fish length for each
fish were then entered into one of the standard growth
models. In general, unbiased growth estimates are
best provided by entering only one age-length esti-
mate per fish. However, where data are limited, the
overall fish-otolith length relationship can be used to
backcalculate fish length at the otolith size corre-
sponding to the completion of growth through each
500 pm interval. Fish ages at those same points are
available as described above. Thus several estimates
of size at age are available for each fish, which can
then all be entered into a growth model. However,
multiple observations from a single fish are not
independent.

The numerical integration method for annular age
estimation assumes that daily increment formation is
continuous throughout the lifetime of the fish.
However, short periods of interrupted otolith growth
are unlikely to result in a noticeable reduction in
accuracy. Of more concern is the possibility that
daily increment widths become so attenuated with
age that they become unresolvable. If this were to
occur, none of the increments produced in older fish
would be measurable and the corresponding otolith
growth rates would be based on previous periods of
faster growth. The resulting age calculations would
underestimate the actual age of the fish. While incre-
ment widths in adult fish otoliths have seldom been
measured, it is disturbing to note that Ralston and
Williams (1989) encountered this very problem when
examining gindai (Pristipomoides zonatus) otoliths.
As a result, they were unable to measure increment
widths at otolith diameters exceeding 7500 pm,
although most of the fish present in the fishery had
otoliths exceeding this size. Accordingly, Ralston
and Williams (1989) expressed the greatest confi-
dence in their age estimates of smaller fish; the age
estimation error associated with the larger fish could
not be estimated.

A second assumption underlying the numerical
integration technique is that the measured increment
sequences are unbiased representatives of the corre-
sponding otolith interval. Where preparation artifacts
have obscured increments in a particular section, there



should be no problem. However, Ralston and
Williams (1989) caution that some care should be
taken to ensure that increment sequences are selected
as objectively as possible, and should not be selected
on the basis of increment width and the associated
ease of interpretation.

Growth Models

The preparation of a parameterized growth model is
often considered to be a standard product of otolith
microstructure examination. Growth models may vary
in complexity from that of a simple linear regression
of fish size on age/increment count to sophisticated
maximum likelihood estimates of size at age. In most
instances, the rationale for model preparation is to
allow prediction of an expected mean size or growth
rate at some age and/or to facilitate comparisons of
estimated growth with other published estimates.
Common to many models is the removal of informa-
tion concerning the observed variance in size at age.
For this reason, a simple scatterplot of fish size versus
age is a useful starting point for any analysis of
growth.

In principle, calculations of growth rate should be
based upon the growth trajectories of individual fish;
in practise, population trajectories are often taken to
represent individual growth, despite potential biases
introduced through size-selective mortality and gear
avoidance (Ricker 1975). Any measure of fish size
may be used in the calculations, although we will only
refer to length in our discussion. There are also sev-
eral measures of growth rate available, with the most
familiar being “absolute growth rate”, defined as the
change in fish length (or weight) per time interval,
and the “instantaneous growth rate”, where the time
interval is reduced to near-zero and the growth rate is
calculated as a proportion of the initial fish size
(Ricker 1979). It is important to note that the absolute
growth rate will vary with the time interval that is
selected if growth is nonlinear. For this reason, the
instantaneous absolute growth rate, or the tangent to
the slope of the length at age curve at the desired age,
can sometimes be a more meaningful measure than
the absolute growth rate.

Calculations of growth rate may be based upon
equations derived from either empirically-fitted
curves or some of the generally accepted growth mod-
els; in actual fact, the distinction between the two is
somewhat arbitrary. An advantage of the more com-
monly-used growth models (e.g., linear regression,
Gompertz, logistic and von Bertalanffy models) is that
the associated parameter estimates are often readily
interpretable by other workers. However, when the
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FiG. 1. Examples of parametric and nonparametric smoothing
techniques applied to a set of simulated length at age data. Both
the parametric (10-term moving average, resmoothed) and the
nonparametric (SRSSH median smooth) techniques fit the data
well, but neither were accompanied by descriptive equations.

above models cannot be fitted, the utility of empiri-
cally-fitted curves should not be overlooked.

Empirical Models

There are a large number of empirical curve-fitting
procedures available for use with growth data
(Lancaster and Salkauskas 1986). Smoothing tech-
niques generally associated with time series analysis
can provide useful measures of central tendency, but
not all are suited to calculations of growth rate.
Resistant nonlinear smoothing (more commonly
referred to as median smoothing) is a nonparametric
technique, and thus is relatively insensitive to outliers
in the data. The parametric analog is a moving aver-
age. Both techniques calculate the median (or aver-
age) of a selected number of points on either side of a
target point. If desired, the points can be weighted on
the basis of their proximity to the target. Both the
median smooth and the moving average curves pro-
vided reasonable fits to a set of simulated length-age
data (Fig. 1), and thus were suitable for summarizing
trends in length at age. Note however, that neither
approach resulted in an equation from which growth
rate could be calculated. Where necessary, growth rate
at age could be approximated by calculating the slope
of the tangent to the curve at the desired age. The appli-
cation of moving averages to growth data is exempli-
fied by the study of Brothers and McFarland (1981).

Polynomial regressions can be an effective means
of summarizing length at age data, especially since
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FiG. 2. Example of a polynomial regression fitted to the same
length at age data as that of Fig. 1. A third order regression was
fitted, resulting in two inflection points in the fitted curve. While a
polynomial regression is often considered to be an empirically-fit
curve, the accompanying regression equation can be used for pre-
dictive purposes.

they incorporate a descriptive equation which can pro-
vide the basis for calculations of instantaneous growth
rate. Polynomial regressions are based on the general
formula:

4) L=a+bX+b,X?+b:X3+...+b,X"

where a and b,...b, are regression parameters to be
estimated (generally through least squares), L is fish
length (or weight), and X is age or increment count.
The number of terms (r) that are introduced should be
one more than the number of inflection points in the
curve, but in most growth curves, seldom exceeds four.
As an example of polynomial smoothing, Fig. 2 pre-
sents a third order polynomial regression fitted to the
simulated data of Fig. 1. Polynomial regressions have
been applied to otolith data by Wilson and Larkin
(1982), West and Larkin (1987), and McMichael and
Peters (1989).

Simple Linear Regression Models

While the distinction between empirical length-at-
age curves and growth models is somewhat arbitrary,
simple linear regressions are the most commonly
applied of what are generally termed growth models
(e.g., Geffen 1982; Walline 1985; Leak and Houde
1987; Victor 1987), and are of the form:

&) L=a+bX
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FiG. 3. Examples of simple linear and geometric mean regression
fits to a set of simulated length at age data. The slopes of the two
regressions become increasingly similar as the correlation
between length and age increases.

Linear regressions (Fig. 3) are easily fit, easily inter-
preted, and are amenable to confidence interval calcu-
lations both around the slope b (growth rate) and
around point values. While they are usually fitted to
relatively short growth intervals, in which even intrin-
sically curvilinear growth patterns can appear linear,
they can be applied over any interval in which growth
rate has remained constant.

Where a straight line fit is desired, an alternative to
the linear regression is the functional regression or
geometric mean (GM) regression (Ricker 1973;
Ricker 1984), where

(6) Y=u+vX

and the slope (v) is the ratio of the standard deviations
() or the square root of the sum of squared deviations
(S8S) of Y and X, as in:

SS,,
@) 5,

Ricker (1973, 1984) suggested that the GM regression
be applied in instances where inherent (non-measure-
ment) variability was associated with both the X and
the Y variables, or when the variables were non-nor-
mally distributed. While he presented examples in
which the regression was used for predictive pur-
poses, the primary application was intended to be that
of description, in which neither of the variables was



clearly causal (e.g., body length versus body weight).
A full description of the advantages and disadvan-
tages of functional regressions is beyond the scope of
this chapter. Suffice to say, there is some controversy
over the relative value of GM regressions to fisheries
research (Sprent and Dolby 1980; Jensen 1986). The
major disadvantages appear to be those associated
with the error distribution assumptions and the
absence of significance statistics for the slope esti-
mate. However, the GM slope appears to provide as
good a measure of central tendency (functional rela-
tion) as any other measure, and perhaps better than
that of predictive regressions. In the context of otolith
growth models, GM regressions appear to have lim-
ited utility, since most growth models are fit in order
to predict length from age, and predictive regressions
are best suited to this task (Jensen 1986). Further, the
daily increment count data generally entered as the
independent variable in an age-length regression can
incorporate a substantial amount of measurement
error, and Ricker (1973, 1984) cautions against the
use of a functional regression when measurement
error exists in the independent variable. While some
workers have fit GM regressions to otolith-fish length
data (Gjosaeter 1987; Watanabe et al. 1988), we are
not aware of anyone who has done so with age-length
data. In any event, GM regression fits become
increasingly similar to those of simple regression as
the correlation between the X and Y variables
increases. A comparison of the two fits, using simu-
lated data, is presented in Fig. 3.

Curvilinear Growth Models

Curvilinear growth models tend to be well suited to
the description of young fish growth, particularly that
of larvae. There are a large number of potential
choices, although none can be used to fit all life his-
tory stages in all species (Ricker 1979). The major
advantage of this class of model is that of flexibility, a
feature which is required to deal with the S-shaped
growth curves that are characteristic of most young
fish. While a number of the growth models were ini-
tially developed on the basis of perceived growth pro-
cesses, the latter have never been firmly substantiated.
Therefore, selection of an appropriate curvilinear
growth model is generally based on goodness of fit
and convenience (Ricker 1979). On the basis of the
above criteria, as well as familiarity and general
acceptance, the exponential, Gompertz, logistic, and
von Bertalanffy models will be briefly discussed here.
For a more complete description of these and other
growth models, the reader is referred to the excellent
reviews of Ricker (1979) and Brett (1979).
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Exponential curves are the curvilinear analogs of
the simple linear regression discussed earlier, where

(8) L = ae®X = a exp[GX]
or equivalently
9) L =expla' + GX]

where a and exp(a') are the size of the fish at age 0,
and G is the instantaneous growth rate. The absolute
growth rate (g) at any given age is the derivative of
Equation (8):

(10)  gx=aG exp|GX]

Since an exponential curve can be fitted with a simple
linear regression after log transformation of the length
data, the two model types share the same statistical
advantages. A somewhat less flexible alternative, due
to its fixed intercept through 0, is the power curve:

(11 L=aXb
with the absolute growth rate at age described by:
(12)  gy=abX?

The family of exponential and power curves can be
used to fit virtually any monotonically increasing
growth curve which does not contain an inflection
point. Since they are not suited to S-shaped growth
curves, they have been used most effectively in
describing short growth intervals, particularly in the
larval stage (Beckman and Dean 1984; Gjosaeter
1987; Tzeng and Yu 1988; Campana and Hurley
1989). With the degree of curvature being controlled
by the value of the exponent, exponential and power
curves can be used to fit straight-line sequences as
well as curves, and are thus considered to be easily-fit
but powerful descriptors of short growth sequences
(Ricker 1979). Examples of exponential and power
models are presented in Fig. 4.

The Gompertz, or Laird-Gompertz, model
(Gompertz 1825; Laird et al. 1965) has become the
most frequently fitted of the young fish growth mod-
els, particularly with respect to larvae (e.g., Methot
and Kramer 1979; Lough et al. 1982; Warlen and
Chester 1985; McGurk 1987). Like the logistic and
von Bertalanffy models, the Gompertz model is well
suited to descriptions of sigmoidal growth (Fig. 5).
Some supporters of the model have suggested that it
become the preferred choice for modelling fish
growth (Zweifel and Lasker 1976). However, like
other models, the Gompertz model can seldom be
used to describe all life history stages in a species
(Ricker 1979). Ricker (1979) presents three alterna-
tive forms for the same model:
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FiG. 4. Examples of models which can be fit to curvilinear data
with no inflection points. (Top) The exponential model is often fit
to short growth sequences, since the degree of curvature is con-
trolled by the value of the exponent. (Bottom) The curvature of
the fitted power curve (2.61 Age037) is also controlled by the
value of the exponent, but this form of model is constrained
through the origin. If necessary, an intercept parameter could be
added to the model (eg. Y=Intercept + aXb) to remove this con-
straint. While the length-based version of the von Bertalanffy
model (Y = 14.98(1-exp(-0.0247(X+12.10)))) is not constrained
through the origin, it cannot be fitted to sigmoidal data as can the
weight-based version.

(13) L =Lgexp[k(1 - exp{— GX})]
(14) L=L. exp[-kexp(- GX)]
(15) L=L. exp[-exp(-G{X - Xy }]
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FI1G. 5. Examples of the Gompertz, logistic, and von Bertalanffy
(weight) growth models fit to a set of simulated sigmoidal length
at age data. The fitted models are: Length = 12.29 exp(—exp
(—0.0459(X—-39.70))) — Gompertz; Length = 11.39/(1+exp
(—0.0777(X—46.40))) — Logistic; Length = 13.00(1—exp(—0.0353
(X—4.754)))? — von Bertalanffy.

where Ly is the length at age X = 0, L.. is the asymp-
totic length, G is the instantaneous rate of growth at
age Xy, Xp is the inflection point of the curve and the
age at which absolute growth rate begins to decline,
and k is a dimensionless parameter. The absolute
growth rate (g) at age X is calculated as:

(16)  gx=GLy(In L..—In Ly)

The logistic growth model will often result in a growth
curve fit which is very similar to that of the Gompertz
model (Fig. 5). However, the former differs in that the
regions above and below the inflection point are sym-
metrical, while those of the Gompertz curve are not.
The effect of this difference is difficult to see except
where the data extend well beyond the inflection point
on each side. Two forms of the logistic curve are:

(17) L =L.(1 +exp[-G(X-Xp)])!
18) L=L.1 + cexp[-GX])!

where G is the instantaneous growth rate at the origin
of the curve, X; is the age at the inflection point of the
curve and the age of maximum absolute growth rate,
and c is a parameter to be estimated. The absolute
growth rate (g) of the logistic curve at age X is:

(19)  gx=GLx(L.. - Lx) (L.)!

The logistic curve has traditionally been used to
describe the growth of populations, and forms the



basis for surplus production models in fisheries.
However, it has also been used to model the growth of
individual fish (Nishimura and Yamada 1984;
Campana and Hurley 1989).

The von Bertalanffy growth model (von Bertalanffy
1938) has long been used to describe the growth of
adult fish (Ricker 1979), but has also seen application
to the early life history stage (Ralston 1976; Wild and
Foreman 1980; Laroche et al. 1982; Young et al.
1988). The standard length-based model can be used
to fit most growth data lacking an inflection point
(Fig. 4b), but it is not suitable for a sigmoidal growth
pattern. It has the form:

(20) L=L.(1-exp[-K(X-Xp])
and an absolute growth rate at age described by:
(21)  gx=K(L+Lx)

where K is the von Bertalanffy (or Brody or Putter)
growth coefficient, and Xj is the predicted age at
which fish length is zero. Some care is required in the
interpretation of the von Bertalanffy parameters, since
the nomenclature is somewhat misleading. The
growth coefficient K is a measure of the rate at which
the growth rate declines, not a measure of growth rate
itself. Of greater consequence for those studying the
growth of young fish, X, is a statistical parameter
only, and seldom corresponds with the age of the fish
at hatch. As with the other growth models, selection
of the von Bertalanffy modei should be based upon
goodness of fit and convenience. However in general,
we have found it to have fewer applications to larval
growth than some of the other models, largely
because of its inapplicability to sigmoidal growth
data. Generality is enhanced through use of the cubic
version of Equation (20), designed for modelling
growth in weight, which can be used to fit either
length or weight data containing a growth inflection
(Fig. 5):

(22) W= W.(1 - exp[-k (- 1p)])?

Age-Temperature Growth Models

The growth models presented to this point are con-
sidered to be among the best available for prediction
of length and growth rate when only age data are
available. Age, of course, is a useful predictor of fish
size. However, both food and temperature are strong
modifiers of growth rate in fish (Brett 1979), and both
variables may differ markedly between populations,
sampling dates and environments. Accordingly,
age-structured growth models may have limited util-
ity when the objective is to compare the growth of
fish among different environments.
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To our knowledge, there are no age—structured
growth models available which include both food and
temperature terms and which can be easily parameter-
ized in field situations. However, where temperature
data are available, the use of an age- and temperature-
mediated growth model can be of substantial value in
predicting the growth of young fish in different envi-
ronments (Campana and Hurley 1989). The model is
of greatest value when the contrast in the temperature
data is high, or alternatively, when the growth of the
target species is particularly sensitive to small temper-
ature gradients. These conditions are most likely to be
met when multiple fish samples have been collected
from a heterogeneous environment, or when samples
have been collected at different times in the year.

The basis for the age-temperature growth model is
the logistic growth model described earlier (Equation
17) (Campana and Hurley 1989). It has been clearly
established that temperature influences the absolute
growth rate of fish, with a temperature optimum
beyond which growth rate decreases (Brett 1979;
Ricker 1979). The absolute growth rate in the logistic
model varies with age. Therefore, the age—tempera-
ture model incorporates a parabolic temperature term
which serves to modify the absolute growth rate on a
daily basis. The general form of the model is:

age

(Absolute growth rate X
(23) Lage = Lhaten + EO

Temperature term) dt

Using Equation (19) for the absolute growth rate of
the logistic curve, and the equation describing a
parabola for temperature, and assuming that the
model will be fit on a daily basis, the result is:

age

(24) Lyge= Lyan+ K x 2, O(Gl = GI2LY) X (¢ = (- Top)?)
t=

where [, = L.(1 + exp[-G(t - tp)])'}; G, L., t, ¢, and
T, (= temperature optimum) are model parameters;
and Ly, and K are fixed parameters to be determined
independently. At first glance, Equation (24) may
appear somewhat daunting. However, the data re-
quirements are modest, consisting only of the ages
and the daily temperatures to which each larva was
exposed. Once the data are prepared, the model can be
fit with any of the available nonlinear regression pro-
cedures. Figure 6 presents an example of the fitted
mode] taken from Campana and Hurley (1989). The
input data were derived from five independent
cruises, made at monthly intervals.

Two points deserve amplification. First of all, the
age—temperature model can and should be fit using
the pooled inventory of samples (rather than one sam-
ple at a time). Since the model was designed to test
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FiG. 6. The age-temperature growth model combines a logistic
growth equation with a parabolic temperature term which modi-
fies absolute growth rate on a daily basis. In the example here,
taken from Campana and Hurley (1989), the equation is of the
form of Equation 24, with G=0.0502, L..=59.18, £,=60.57,
¢=22.77, Tou=5.925, Laev=3.0, and K=0.2. Lengths were In-trans-
formed to stabilize the variance. The fitted line appears irregular
since only one of the two independent variables is plotted.

for temperature effects on growth, sample pooling
increases the contrast in the data, and thus improves
the model’s discrimination of those effects. Secondly,
examination of the model residuals is a mandatory
part of any analysis (see later), but is particularly
important with respect to this model. Residuals should
be random across predicted values, sizes, ages, and
temperatures, both within and among cruises, before
the model should be considered satisfactory.

Since the age-temperature model integrates the
effect of temperature on growth rate for each day of a
young fish’s life, a daily temperature series, rather
than a point estimate, is required for each fish.
Normally, all fish within a given sample will be
assumed to have experienced the same temperature on
a given date. However, daily temperature records will
not always be available for each sample. Reasonable
approximations of the daily temperature series can be
made through fitting a curve to periodic (e.g.,
monthly) measurements. Campana and Hurley (1989)
provide an example of this approach, in which a sinu-
soidal curve was fit to each monthly mean tempera-
ture record, and the resulting equation used to predict
the temperature on each day.

Common Model-Fitting Errors
In any fitted model, care should be taken to ensure
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FiG. 7. Example of some common errors which can be made in fit-
ting a growth model. (Top) The actual underlying relationship is a
two-stage linear process under which the slope (growth rate)
increases by a factor of 10 after age 15 (dotted line). A normally-
distributed error term which is proportional to the mean has been
added to the underlying relationship. On first glance, a linear
regression (solid line) appears to fit the data well. (Bottom)
Examination of the residuals indicates that the fit of a single linear
regression to the data is inappropriate; the residuals are not ran-
domly distributed around the regression, particularly at young ages,
and the variance increases with age (heteroscedastic), making indi-
vidual observations of older fish more influential than those of
younger fish. Use of the fitted regression to estimate growth rate
would overestimate the growth of young fish by a factor of 12.

that the residuals are randomly distributed and that the
variance is constant across the entire data range.
Failure to test these latter two assumptions can result
in estimates of growth rate which are inaccurate,
biased at certain ages, or unduly influenced by out-



liers. In the example of Fig. 7, the fitted linear regres-
sion appears to be well suited to most of the simulated
data. However, the residuals are not randomly dis-
tributed at the younger ages, indicating that the model
should not be fit to the young fish data. Growth rate
calculations based on the entire data set would overes-
timate the growth rate of the young fish (<15 d) by
more than an order of magnitude. A similar effect can
result from inclusion of data with high leverage,
wherein a regression can be forced through, or near
to, isolated data points at very high (or low) X values
at the expense of goodness of fit of the remaining
data. This effect should be evident as a pattern in the
residuals, or equivalently, a substantial shift in the
regression parameters after removal of the high-lever-
age data. The influence of increased variance with age
(heteroscedasticity) (Fig. 7) is reflected in undue
influence on the regression slope by the older fish
data. Removal of an outlier among the older fish
resulted in a change of slope that was twice as large as
the removal of a proportionally-equivalent outlier
among the young fish. To provide a robust and accu-
rate estimate of the growth rate of the fish in Fig. 7, a
linear regression would have to be fit only to the data
corresponding to fish older than 15 d, after transfor-
mation to stabilize the variance.

Growth Backcalculation

Growth backcalculations derived from a series of
daily growth increments represent what is conceiv-
ably the most powerful application of otolith
microstructure examination. Theoretically, it is possi-
ble to use the measured widths of a daily increment
time series, in conjunction with a fish length:otolith
length relationship, to determine both the size and the
growth rate of an individual fish for each day of its
life. In practise, such calculations suffer from a num-
ber of logistical and theoretical constraints (Campana
and Neilson 1985; Bradford and Geen 1987; Secor
and Dean 1989; Neilson, this volume), all of which
would have to be addressed prior to use of any of the
backcalculation procedures presented here.

Problems with Traditional Growth
Backcalculations

Virtually all growth backcalculation procedures are
based upon the presumption of proportionality (a lin-
ear relationship) between the size of the otolith (or
scale or other bony structure) and the size of the fish
(Carlander 1981; Bartlett et al. 1984; Weisberg 1986;
Smale and Taylor 1987; Campana 1990). Irrespective
of whether the backcalculations are being made from
annuli or daily growth increments, two underlying
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assumptions exist: (a) the frequency of formation of
the periodic feature (e.g., daily increment) is constant,
and (b) the distance between consecutive features is
proportional to fish growth. Validation of the fre-
quency of increment formation is a mandatory com-
ponent of otolith microstructure examination, and is
covered in detail elsewhere (Geffen, this volume).
While a complete validated sequence of daily incre-
ments is to be preferred, backcalculations are possible
even when early otolith growth appears to be charac-
terized by nondaily increment formation (e.g., in her-
ring [Campana et al. 1987]). In such cases, backcalcu-
lations would be restricted to the contiguous region
between the date of sampling (otolith edge) and the
initiation of uninterrupted daily increment formation.
Clearly, such calculations would have to be presented
as a function of size at date, rather than at age. As for
the assumption concerning proportionality between
fish growth and otolith growth, justification has gen-
erally been based on empirical correlations between
fish and otolith size. These correlations and various
experimental studies (Wilson and Larkin 1982; Volk
et al. 1984) certainly indicate a general correspon-
dence between fish and otolith growth, but the corre-
spondence need not, and often does not, apply on an
individual or detailed level (Gutiérrez and Morales
Nin 1986; Bradford and Geen 1987). To some extent,
the apparent breakdown between fish and otolith
growth is a function of a recently-demonstrated corre-
lation between growth rate and the fish:otolith rela-
tionship (Mosegaard et al. 1988; Reznick et al. 1989;
Secor and Dean 1989). However, there are a number
of species in which the fish-otolith length relationship
is inherently nonlinear. Backcalculation in these
species is difficult unless the relationship can be
described mathematically (e.g., Butler 1989). When
backcalculating from a curvilinear fish—otolith rela-
tionship, there is an implicit assumption that the
inflection point of the curve occurs at the same
fish—otolith size in each fish. This assumption is
unlikely to be met in most cases, but the implications
of such are not yet known.

The traditional regression and Fraser—Lee (Carlander
1981) procedures are capable of introducing bias into
otolith microstructure backcalculations, so they should
be used with caution, if at all (Campana 1990). As is
the case with most of the backcalculation methods, they
assume a linear relationship between fish and otolith
length. The regression method estimates fish length (L)
at some previous age (a) through insertion of the mea-
sured size of the otolith (O) at age a into a fish
length—otolith length regression derived from samples
of the population,
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FiG. 8. An example of growth backcalculations from individual
fish using the regression (R), Fraser-Lee (FL), and biological
intercept (B) procedures. Regression-based backcalculations
assume no deviation from the overall regression, while
Fraser-Lee backcalculations assume that individual fish—otolith
deviations are maintained proportionally throughout the backcal-
culation. Both procedures result in mean backcalculated lengths
which are equal to the overall fitted regression (solid line). In con-
trast, the biological intercept procedure (Equation 27) is in no way
influenced by the overall fitted regression; the slope of each
fish—otolith trajectory is independent of all others in the sample.
In this example, independent observations would have been used
to determine that fish and otolith growth were proportional after
the biological intercept, which in this example occurred at an
otolith length of 2.0 and a fish length of 1.0.

(25) L,=b0,+d

where b and d are the slope and intercept of the
regression, respectively. Since this procedure assumes
no deviation of individual fish and otolith measure-
ments from the overall regression, it has generally
been applied when mean backcalculated lengths,
rather than individual values, are of importance. In
contrast, the Fraser-Lee (or Lee) procedure assumes
that any deviation of an individual measurement from
the overall fish—otolith regression will be observed
proportionally at backcalculated lengths, as in

(26) La =d+ (Lc - d) Oc-1 Oa

where L. and O, are the fish length and otolith size at
capture, respectively. While the Fraser—Lee approach
does not incorporate the regression slope directly, the
value of the regression intercept is, of course, influ-
enced by the slope. Indeed, the regression and
Fraser—Lee procedures differ algebraically only in that
the latter is intercept-corrected. As a result, the two
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procedures produce identical mean backcalculated
lengths, although backcalculations at the individual
level may differ (Fig. 8). Both the regression and the
Fraser-Lee procedures are sensitive to the value of
the intercept that is employed; as a result, more
sophisticated linear and maximum likelihood models
have been developed to account for age- and sample-
dependent variations in the fish-length relationship
(Bartlett et al. 1984; Weisberg 1986; Smith 1987).
However, common to all of the procedures is the
assumption that the fish—otolith length relationship
does not vary in a systematic fashion with growth
rate, and further, that one or both of the regression
parameters can be accurately estimated from the pop-
ulation. It has now been convincingly demonstrated
that the fish—otolith relationship does vary systemati-
cally with the growth rate of the fish: otoliths from
slow-growing fish are larger and heavier than those
from fast-growing fish of the same size (Templeman
and Squires 1956; Boehlert 1985; Mosegaard et al.
1988; Reznick et al. 1989; Secor and Dean 1989).
Further, a recent study indicates that individual varia-
tions in growth rate result in a population-wide fish-
otolith regression which differs significantly from that
of the mean of the individual fish (Campana 1990).
The net result is that traditional growth backcalcula-
tions can underestimate previous lengths at age, a
finding which appears to account for the apparent
ubiquity of Lee’s phenomenon.

Backcalculation with the Biological Intercept
Algorithm

The “biological intercept” backcalculation algo-
rithm is a modification of the Fraser-Lee equation
which employs a biologically determined, rather than
a statistically estimated, intercept value (Campana
1990). Like the Fraser—Lee method, the biological
intercept procedure assumes proportionality between
fish and otolith growth within an individual. However,
unlike the former, the value of the biological intercept
is determined by the mean size of the fish and otolith
at the initiation of proportionality, and thus is insensi-
tive to sample to sample variations in regression
parameters. Indeed, the biological intercept procedure
doesn’t require any samples from the population,
other than those used to verify proportionality
between fish and otolith growth after the biological
intercept. In many cases, the biological intercept can
be determined by simple measurements of fish and
otolith size in newly-hatched larvae in the laboratory.
The procedure is also insensitive to the growth rate
effect described earlier, since the fish—otolith slope is
calculated independently for each fish. And finally,
backcalculation accuracy is relatively insensitive to
normal variation around the intercept value, largely



because of the small values involved. The equation is:
(27) La = Lc + (055: Oc) (Lc - Ll) (Oc - Oz)-l

where L, and O, are the size of the fish and otolith at
the biological intercept, respectively. An example of
its use is presented in Fig. 8. Note that the slope and
intercept of the fish in the sample are not used in the
backcalculations. Assuming that an independent study
has determined that fish and otolith growth are pro-
portional within individuals from the time of hatch,
growth backcalculations back to the time of hatch
may be warranted. In contrast, regression or
Fraser-Lee backcalculations would require that back-
calculations be restricted to the range of fish and
otolith lengths evident in the sample.

In some situations, the differences between growth
backcalculations made with traditional methods and
those made with the biological intercept procedure
will be relatively small. This will be particularly true
when the statistical and biological intercepts are
collinear, such as when samples of very young fish
(near the size of the biological intercept) have been
collected. However, the biological intercept procedure
will always be at least as accurate, if not more so, than
the traditional methods. On the other hand, it should
be clearly recognized that all of the above methods
are based on the assumption of a constant linear rela-
tionship between fish and otolith length within an
individual. Neither the traditional nor the biological
intercept methods will provide accurate backcalcula-
tions in the presence of nonlinear fish—otolith relation-
ships (Campana 1990; Secor and Dean 1992).

Backcalculation with Multivariate Algorithms

Where there is an intrinsically curvilinear relation-
ship between fish and otolith length, transformation of
the data to a linear form will allow the use of
Equation (27). However, where time-varying growth
rates have been in effect, use of any of the linear
backcalculation procedures described in the previous
section will result in at least some error. There is now
increasing evidence that the width of a given daily
increment is linked more closely to metabolic rate
and/or temperature than to somatic growth
(Mosegaard et al. 1988; Wright 1991; Secor and Dean
1992). If true, reliable growth backcalculation proce-
dures will almost certainly have to incorporate a
chronological history of either metabolic rate or tem-
perature. No such procedure yet exists. However,
there are two multivariate algorithms, both very
experimental, which use proxies for the metabolic/
temperature term. Secor and Dean (1989, 1992)
argued that age affects the relationship between
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otolith size and fish size in a cumulative manner,
resulting in different-sized otoliths in fast- and slow-
growing fish of the same size. Growth backcalcula-
tions made with their model accurately predicted the
growth history of laboratory-reared fish, but per-
formed poorly when applied to pond-reared fish
(Secor and Dean 1992). Using a different rationale,
Campana (1990) suggested that previous lengths at
age could be estimated using a measured series of
daily increment widths and an estimate of the magni-
tude of the growth rate effect on the fish—otolith rela-
tionship. An algorithm was presented, but was not
tested. Therefore, at present, there exist no backcalcu-
lation algorithms which can provide accurate esti-
mates of past growth under all conditions. In addition,
none of the available backcalculation procedures was
designed to deal with the observation that otolith
growth tends to be smoothed relative to fish growth
(Campana and Neilson 1985). Time series models are
necessary when account is to be taken of autocorre-
lated increment widths (Gutiérrez and Morales Nin
1986). Indeed, time series models appear to be well
suited to the analysis of these types of data.

Backecalculation of Recent Growth

Given exact proportionality between fish and
otolith growth, the width of the most recently formed
daily increments should provide a measure of recent
growth. Such measures are difficult to obtain through
other means, thus explaining the widespread interest
in this approach by workers studying the environmen-
tal conditions which promote the survival of young
fish (Methot 1981; Thomas 1986; Bailey 1989;
Suthers et al. 1989; Powell et al. 1990; Hovenkamp
and Witte 1991). The assumptions underlying the use
of increment width measurements as a proxy for
instantaneous growth rate are the same as those pre-
sented earlier for general growth backcalculation.
However, the scale of the analysis makes the resulting
inferences considerably more sensitive to deviations
from the assumptions. In particular, any short term
deviations from a linear fish—otolith size relationship
will be much more evident at the daily level than
when averaged across the entire life history. For this
reason, most workers have employed aggregates of
increments, such as those corresponding to the outer-
most 7-30 days, as their index of recent growth. Use
of aggregated increment widths reduces, but does not
eliminate, the influence of autocorrelated otolith
growth and short-term curvilinearity in the
fish—otolith relationship. However, we are not aware
of any studies which have quantified the level of
aggregation which is required.



There are three basic steps involved in the estima-
tion of recent growth rates based on otolith growth:
measurement, preparation of a quantitative (usually,
but not necessarily, linear) relationship between fish
and otolith growth, and conversion of otolith growth
to fish growth. Measurement of the outermost daily
growth increments along a pre-defined radius, either
individually or in aggregate, has been discussed else-
where (Campana, this volume). Preparation of a
fish—otolith relationship may be as simple as the
regression of fish length on otolith length, if fish and
otolith growth are proportional. If the latter, the resid-
uals from the regression will be randomly distributed
around zero with respect to otolith size. Note that fish
length is best considered as the dependent variable,
since it (rather than otolith length) is the variable to be
predicted. In instances where otolith length increases
curvilinearly with fish length, log transformation of
the otolith measurements is often sufficient to induce
linearity, although this should be checked. The impor-
tance of inducing a linear fish—otolith relationship
cannot be overemphasized, since increment widths
can increase with otolith size, even under constant (or
in some cases, decreasing) fish growth rates, if the
fish—otolith relationship is nonlinear. Finally, the
(transformed) otolith measurements are converted to
fish measurements through the use of Equation 27,
and interpreted in terms of daily growth rates after
dividing the net change in fish length by the number
of daily increments used in the aggregate increment
measurement. Note that Equation 27 incorporates an
inherent adjustment for individual variations in otolith
size among fish of the same length; the size correction
used by Methot (1981) is not necessary.

Backcalculation of recent growth patterns suffers
from the same constraints as those described in the
last two sections. Specifically, nonlinearities in the
fish—otolith relationship due to growth, metabolic rate
and/or temperature will introduce error into the result-
ing backcalculations. Indeed, these errors can be more
pronounced when backcalculating recent growth than
when estimating the growth of an earlier life history
stage, due to the strong influence of a recent shift in
the slope of the fish—otolith relationship on the back-
calculated lengths. There are as yet no published pro-
cedures which have dealt successfully with this prob-
lem. However, it may be avoidable if it can be
demonstrated that the fish—otolith slope connecting
samples collected just before and just after the growth
period of interest is similar to the slope being used for
backcalculation.

Growth and the Environment

Analyses designed to link the growth chronology
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evident in the otolith to associated environmental
observations constitute one of the most promising,
and complex, applications of otolith microstructure
examination. In theory, such analyses can be used to
test many of the current hypotheses concerning
growth, survival, and recruitment. However, a mean-
ingful test of an environment-growth relationship is
anything but straight forward: a simple correlation or
regression between a growth index and an environ-
mental variable(s) can be grossly misleading. Valid
statistical approaches to the analysis of otolith—envi-
ronment data are still being developed. To this end,
the parallel field of dendrochronology (tree ring
chronologies) is much more developed than is our
own. Investigators wishing to pursue otolith—-environ-
ment analyses are urged to review the tree ring litera-
ture, and note its reliance on time series analysis and
general linear models (Fritts 1976; Hughes et al.
1984; Stahle et al. 1988).

The growth indices available for analysis in relation
to the environment can be classified into three broad
categories: recent growth, mean growth, and individual
growth rate time series. All are valid growth indices,
but the means by which they can be interpreted differ
widely. For instance, indices of recent growth have
often been related to environmental variables (e.g.,
Methot 1981; Thomas 1986; Bailey 1989; Karakiri et
al. 1989; Suthers et al. 1989; Hovenkamp and Witte
1991), either in a relative sense or through correlation
(e.g., both temperature and recent backcalculated
growth, as indicated by the mean 10-d outer increment
width, at Site A was larger than that of Site B). The
advantage of this approach is associated with the inde-
pendence of the observations; that is, each fish provides
a single estimate of recent growth rate, thus avoiding
the statistical problems of autocorrelated otolith
growth. The danger of this approach becomes evident
if the analysis does not test explicitly for the possibility
of a faster growth rate in larger individuals. Since larger
fish often experience greater absolute growth rates than
smaller fish, and given differences in mean size
between samples, inter-sample differences in indices of
recent growth may well result from size differences
between samples, and be falsely attributed to environ-
mental sources. Suthers et al. (1989) applied a simple
analysis of covariance approach to overcome this prob-
lem in the search for environmental correlates of
enhanced growth in Atlantic cod (Gadus morhua).

A second approach is to relate mean growth rate,
rather than recent growth rate, to some combination of
environmental variables. This approach is recom-
mended only for very young fish, if only because
environmental fluctuations during an extended period



can confuse any interpretation of the corresponding
growth data. Cohort-specific growth rates of young
larvae have been successfully related to temperature
and other variables by several workers (Methot and
Kramer 1979; Crecco and Savoy 1985).

While potentially the most powerful of the growth
indices, analysis of the entire sequence of daily incre-
ment widths within each otolith is complicated by the
inherent autocorrelation of otolith growth. As a result,
the backcalculated growth observations are not inde-
pendent of each other, and thus are difficult to relate
statistically to any other time series of variables. This
problem may account for the unexpected results of
workers who have regressed environmental time
series on sequences of backcalculated growth rates
(e.g., Barkman and Bengtson 1987). In an innovative
and statistically rigorous approach, Thorrold and
Williams (1989) applied a repeated-measures
ANOVA, followed by polynomial contrasts with time,
to test for growth sequence differences among
cohorts. Observed differences were then interpreted
qualitatively with respect to the environment.
However, the most powerful approach, and the almost
universal choice of dendrochronologists, is that of
time series analysis. Time series analysis, particularly
of long growth sequences, takes full advantage of the
available information, takes explicit account of any
inherent autocorrelation, and is well suited to testing a
broad range of hypotheses concerming environmental
influences on growth. While appropriate for detecting
cycles in growth data (e.g., lunar cycles; Campana
1984), its most powerful applications have been
directed towards determining the influence of envi-
ronmental variables on growth (e.g., Gutiérrez and
Morales-Nin 1986; Thorrold and Williams 1989).

An understated danger with respect to the search for
growth-environment relationships is that of spurious
correlation. Spurious correlations occur most often
when two variables, each characterized by a trend
through time, are correlated or regressed against each
other. A relevant example is that of a declining trend in
a sequence of daily increment widths and a declining
trend in temperature. While the two sequences will be
very strongly correlated, the high correlation will be
largely due to the coincident trends, and not to any
inherent relationship between the two. For instance, the
declining increment widths may be due solely to the
reduced growth rates characteristic of older fish. Since
regression analysis assumes that each of the observa-
tions are independent of each other, and since trended
observations are not independent, a more appropriate
regression analysis would require that the two time
series first be detrended through one of the available
techniques (e.g., first differencing; the reader is referred
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to the time series literature for further information).
Note also that spurious correlation can obscure under-
lying relationships as much as it can enhance nonexist-
ing ones. Detrending is a universal precursor of any
time series analysis, and should also be implemented
prior to regression of an environmental sequence on a
growth sequence. An unfortunate byproduct of its use
is that it can also remove real as well as spurious corre-
lations, resulting in a loss of power. A good example of
detrending was presented in the environment-recruit-
ment sequence analysis of Thompson and Page (1989).

Hatch Date Analysis

Hatch date analysis, also known as birthdate analy-
sis, is one of the more promising tools for the study of
recruitment processes. The underlying principle is sim-
ple; given a random sample of fish collected on a
known date, and through examination of the otolith
microstructure to determine the age of each fish, the
frequency distribution of hatch dates for the survivors
in the population (the random sample) can be calcu-
lated. The resulting hatch date distribution is, of
course, a transposed (mirror) image of the age—fre-
quency distribution. The hatch date distribution can
then be compared with the observed production sched-
ule of newly-hatched larvae (or late-stage eggs). In the
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Fic. 9. The intent of hatch date analysis is to relate the observed
frequency distribution of hatch dates (or egg or larval production)
to those of the survivors. In principle, differences between the
observed and backcalculated distributions would indicate that the
survival of larvae hatched on certain dates was enhanced relative
to those hatched on other dates. In this example, larvae hatched in
the first half of the spawning season survived poorly relative to
those hatched later in the season.



absence of selective mortality, the shapes of the back-
calculated hatch date distributions and the observed
larval production distributions should be identical.
However, if differences between the two distributions
exist (Fig. 9), such would suggest that the survival of
larvae hatched on certain dates was enhanced relative
to those hatched on alternate dates. The subsequent
challenge is to relate the relative survival of the daily
cohorts to likely environmental sources, and thus iden-
tify potential modifiers of recruitment success.

One of the most useful features of hatch date analy-
sis is the fact that it focuses attention on the character-
istics of the survivors, rather than on the population at
large. There are many potential sources of young fish
mortality, only some of which may be important in
determining year—class strength. However, where cer-
tain daily cohorts contribute disproportionately to the
abundance of the survivors, one may be certain that
critical factors influencing recruitment have been
involved. In his pioneering work with hatch date anal-
ysis, Methot (1983) related monthly differences in the
relative survival of larvae to various environmental
signals, as well as to the overall effect on year—class
strength. Analogous studies are now underway around
the world, indicating the value which is attributed to
this type of study. There is no question that hatch date
analysis is a potentially powerful application of
otolith microstructure examination. However, it
should not be viewed as a panacea; there are certain
species and life history stages for which hatch date
analysis will not be appropriate for anything more
than a general description of hatching dates. Indeed,
without proper caution, hatch date analysis can be
more misleading than instructive. Gear selectivity and
the difficulty of adequately sampling each of the rele-
vant life history stages further complicates the issue
(see Butler, this issue). The remainder of this section
illustrates some of the properties and caveats associ-
ated with hatch date analysis, and provides some rec-
ommendations as to its use.

The most serious problem associated with hatch date
distributions is with respect to their instability. While
the dates of production of the newly-hatched larvae
would normally be determined through frequent sam-
pling throughout the hatching period, backcalculated
hatch date distributions are normally determined from
samples collected during a much shorter range of dates.
Given natural mortality, representatives of the larvae
hatched earliest in the season will inevitably experience
greater cumulative mortality than those hatched late in
the season. Accordingly, early season larvae will be
underrepresented in the backcalculated hatch date dis-
tribution relative to late season larvae. Thus, the hatch
date distribution will be skewed, and will be unrepre-
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FiG. 10. Example of a skewed hatch date distribution due solely to
cumulative mortality differences among members of the cohort. In
this example, larval production was assumed to extend symmetri-
cally over a 30-d period (Observed). All larvae experienced an
instantaneous mortality rate of 0.1 d-1. Although all daily cohorts
survived equally successfully to any given age, the mortality rate
was sufficiently high that the first-hatched larvae were less abun-
dant in any given sample solely because they were older. The
skew in the hatch date distribution does not disappear with time;
that is, as long as the mortality rate remains constant, the same
distributional pattern will be observed at any collection date after
completion of the hatching season. Thus, the back-calculated
hatch date distribution does not accurately represent the hatch
dates of the survivors at age, and could be used to mistakenly
infer that early-season larvae survived relatively poorly. The left
hand axis label refers to the observed hatch date frequencies,
while that on the right refers to the backcalculated frequencies.

sentative of the true numbers of the survivors at a given
age. Consider the example of Fig. 10. In this simple
case, the hatch date distribution of a sample of postlar-
vae has been simulated assuming a constant, post-hatch
instantaneous mortality rate of 0.1 d-!. The hatching
period was taken to extend over 30 d, and the collection
was made 50 d after the end of the hatching period.
Clearly, the backcalculated hatch date distribution is
skewed relative to the initial hatching distribution. Yet
at a given age (not date), the survivors of each daily
cohort make up the same proportion of the original pro-
duction as do all of the other daily cohorts. The distri-
butional skew is due solely to the differential in cumu-
lative mortality between the youngest and oldest larvae.
In this example, the oldest larvae will have experienced
30 d more mortality on a given date than the youngest
larvae, resulting in an abundance of the former which is
a mere 5% of that of the youngest larvae on any given
date. This conclusion holds irrespective of the mortality
rate, length of hatching period, and interval to collec-
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FiG. 11. Inverse relationship between instantaneous mortality rate
(M in units of d-!) and daily age which was used in the simulation
of Fig. 12.

tion that is assumed; in all cases, the differential in
cumulative mortality between the youngest and oldest
larvae will control the shape of the hatch date distribu-
tion. This is best seen if the mortality rate in the above
example is assumed to drop to zero at some given age.
Once all of the daily cohorts have reached that age, the
cumulative mortality differential between youngest and
oldest becomes zero, and the backcalculated hatch date
distribution becomes identical to that of initial produc-
tion. In other words, if hatch dates are being deter-
mined from a life history stage with a low mortality
rate, the resulting hatch date distribution will be rela-
tively stable.

The constant mortality rate assumed in the example
of Fig. 10 is clearly unrealistic. More probable is
some form of age- or size-selective mortality,
whereby the mortality rate on the youngest/smallest
larvae is greater than that on the older/larger individu-
als. Any number of age—mortality functions can be
envisioned. However, one possible relationship is an
inverse relationship between instantaneous mortality
rate and age (Fig. 11). Figure 12 demonstrates the
resulting evolution of the shape of the hatch date dis-
tribution as the time interval after hatching is
increased. Note the initial skew in the distribution
immediately after the end of the hatching period, due
to the large cumulative mortality differential between
youngest and oldest larvae. However, as the mortality
rate reaches a low level (Fig. 11), the mortality differ-
ential between youngest and oldest larvae is greatly
reduced, resulting in a hatch date distribution which
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very nearly mirrors that of the initial production.
Simulations using size-selective mortality, rather than
age-selective mortality, produced similar results,
although the variance in age at size resulted in effects
which spread across multiple daily cohorts. It is also
important to note that the shape of the age-mortality
curve itself is irrelevant. Rather, what is important is
the cumulative mortality differential between the
youngest and oldest larvae in the sample. In the
absence of other mortality sources, the age-specific
mortality rates which occur at ages prior to the
youngest age in the sample have absolutely no effect
on the shape of the hatch date distribution.

There are several implications of the simulation
results presented in Fig. 12. First, it would appear that
hatch date distributions will be least stable, and most
unreliable, when the mortality rate at age is high at the
time of collection, since the cumulative mortality dif-
ferential between youngest and oldest larvae will also
be large. Conversely, the hatch date distribution will
be most stable when two conditions are met: (a) the
fish are relatively old at the time of collection, with an
accompanying mortality rate which is stable and low,
and (b) the duration of the spawning (hatching) period
is short, resulting in a minimal differential in cumula-
tive mortality between the youngest and oldest larvae
in the cohort. As a rough rule of thumb, the relative
stability of a hatch date distribution can be approxi-
mated by examining the abundance ratio of the oldest
to youngest fish in the sample, which is in turn an
approximation of the cumulative mortality difference
between the two ages, as in:

old

-( X M)

=young

N, old

N, young ¢
where N is the relative abundance in the population,
young and old are the youngest and oldest daily ages
(i) in the sample respectively, and M is the instanta-
neous mortality rate (d-!). Where the abundance ratio is
very high (e.g., 0.9), a mortality correction will not
make any significant difference to the hatch date distri-
bution. On the other hand, a low ratio (e.g., 0.05)
would indicate that a mortality correction is mandatory,
since the distribution is unstable. Note that this ratio
will only be useful in cases where the representative
sampling of the two age categories has not been con-
founded by gear selectivity or patchiness of the fish.

In theory, an unstable hatch date distribution can be
rendered stable through correction for the differential in
cumulative mortality rates within the cohort.
Interpretation of the hatch date distribution without first
correcting for the cumulative mortality differential will
result in incorrect inferences: the larger the mortality
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FiG. 12. Evolution of a backcalculated hatch date distribution as the time interval between hatching and collection is increased. In this
example, hatching extended symmetrically over 30 d (Observed) and instantaneous mortality rate (M) was assumed to decrease inversely
with age (Fig. 11). Linear and exponential declines in M produced similar hatch date distributions to those presented here. Note the skew
in the backcalculated hatch date distribution immediately after completion of hatching (Day 31). As the daily cohorts age, and as the M on
the youngest larvae declines, the cumulative mortality difference between youngest and oldest larvae decreases, resulting in an increas-
ingly symmetrical backcalculated hatch date distribution. The left hand axis label refers to the observed hatch date frequencies, while that

on the right refers to the backcalculated frequencies.

differential, the larger the error that will result if the
hatch date distribution is not first corrected accordingly.
Note, however, that the mortality correction has noth-
ing to do with the interpretation of the hatch dates; the
mortality correction is an age-specific one across all
cohorts, used simply to put the calculated hatch date
distributions on the same scale as that of the observed
production. The corrected hatch dates can then be inter-
preted in terms of date- and cohort-specific
mortality/survival processes which have changed the
original production date distribution.
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Methot (1983) corrected for the mortality differen-
tial in his samples of juvenile fish through multiplica-
tion of the numbers at age by the inverse of the sur-
vival rate between the age at capture and the age of
the youngest fish in the sample. The survival rate esti-
mates he used were derived independently. Yoklavich
and Bailey (1990) made similar corrections to their
larval hatch date distributions, although they were
forced to correct using an assumed mortality rate dur-
ing the larval stage. The effect of the mortality correc-
tions differed substantially between the two studies,



clearly demonstrating the difficulties of analyzing
hatch date distributions in larvae with a high mortality
rate. Mortality through the juvenile stage in Methot’s
(1983) study was relatively low, and the mortality cor-
rection resulted in only minor differences between the
shapes of the corrected and uncorrected hatch date
distributions. In contrast, the mortality differential
between young and old larvae in the samples of
Yoklavich and Bailey (1990) was substantial, and the
corrected distribution differed markedly from that of
the uncorrected. Use of an alternate mortality curve
could have changed the hatch date distribution in a
different manner.

It will seldom be possible to correct unstable hatch
date distributions without ambiguity. Independently-
derived survival estimates, such as those of Methot
(1983), will not normally be available. And in the
presence of high and unpredictable mortality rates,
such as those of many pelagic larvae, mortality cor-
rection based on average or assumed mortality curves
may well result in hatch date distributions which do
not represent reality. Accordingly, hatch date analysis
is best carried out on a life history stage characterized
by a low and stable mortality rate, in which a mortal-
ity correction makes little difference to the shape of
the distribution. In cases where an influential mortal-
ity correction must be applied, the shape of the cor-
rection should be carefully justified.

While mortality correction is one means by which
an unstable hatch date distribution can be corrected,
there may be an approach (as yet untried) by which
the instability can be avoided altogether. As men-
tioned previously, the production of newly-hatched
larvae (or eggs) is generally determined by sequential
sampling throughout the hatching period. In principle
then, it should be possible to monitor the abundance
of a given cohort, or many cohorts, through sequential
sampling over a time interval equal in length to that of
the production period. The hatch date distributions for
each sample for a given range of ages could then be
summed across all dates to produce a single distribu-
tion in which each daily cohort was sampled at the
same range of ages. Thus, there would be no cumula-
tive mortality differential between daily cohorts, and
hence no need for mortality correction. As an exam-
ple, consider the production of newly-hatched larvae
in a small lake. Assume that the production was moni-
tored daily throughout the hatching period of 30 d
(Day 0-30). If the lake was re-sampled for juveniles
some 50 d later (Day 80), the calculated hatch date
distribution would be skewed by any cumulative mor-
tality differential between the 50-d old and the 80-d
old fish. However, if all of the juveniles were sampled
daily between Day 50 and Day 80, the summed hatch
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date distributions of the 50-80 d old fish in each daily
sample should accurately represent the hatch date dis-
tribution of all cohorts after 50 d. Note that this does
not represent a simple summation of all hatch date
distributions during the collection period, since fish
less than 50 d of age would not be included in the cal-
culations (e.g., only the 50-d old fish would be
included from the juvenile collection at Day 50,
despite the fact that the sample would include fish of
age 20-50 d). Key assumptions of this procedure are
that there is no age- or size-specific gear selectivity,
and no age- or size-related immigration or emigration
out of the sampling area. As well, the periodicity of
sampling will determine the resolution with which the
final hatch date distribution can be interpreted.

It is probably possible to combine sequential sam-
pling on a nondaily schedule (e.g., weekly) with some
form of mortality correction in order to produce a cor-
rected hatch date distribution. Presumably, such a pro-
cedure would minimize the mortality correction
required of a single sample, yet would be logistically
easier than a daily sampling schedule. However, to
our knowledge, no one has yet generated a hatch date
distribution through daily sequential sampling, let
alone through sequential sampling combined with a
mortality correction.

The most common application of hatch date analy-
sis involves the identification of enhanced or depleted
portions of a year—class, followed by correlation of
the perturbed portions with prominent environmental
signals. Examples of the latter might include periods
of storm-enhanced mixing, upwelling, advection out
of the survey area, high or low food availability, and
high or low predator abundance, as well as others.
Most of these correlations are best made with a spe-
cific life history stage (e.g., first-feeding larvae). Yet
it is important to note that hatch date analysis cannot
be used to determine the date or age at which the
hatch date distribution was perturbed from its initial
state. That is, the forces which enhanced/depleted a
portion of the cohort could have been active just after
hatching, or weeks later, just prior to collection; hatch
date analysis cannot be used to differentiate between
these two possibilities. Accordingly, it is difficult to
unambiguously relate a particular environmental cue
to a change in the hatch date distribution, since the
latter could have occurred anytime between hatching
and collection. In principle, sequential sampling could
be used to bound the possible dates during which the
change in hatch date distribution occurred. However,
as noted earlier, hatch date analysis is of questionable
value when mortality rates are high, which unfortu-
nately, may well correspond to the life history stage of
interest. Of course, certain sources of mortality are
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Fi1G. 13. Theoretical representation of cohort abundance over its
lifetime. The three bold tangent lines illustrate the decline in the
slope, the absolute mortality rate at time ¢, as the fish age. In this
model, Z (the instantaneous mortality rate) is constant, although
this need not be the case.

more likely to occur at specific life history stages than
others; for instance, advection out of a favourable area
is more likely to kill very young larvae, with poorly-
developed locomotory skills, than older juveniles. On
the other hand, the absence of large prey items may
result in high mortality of juveniles with no net effect
on young larvae. Therefore, while a stable hatch date
distribution may provide strong evidence of enhanced
survival by certain daily cohorts, it will not necessar-
ily be a trivial problem to identify either the sources
of the enhanced survival, or the age of the larvae
which were affected.

Mortality Estimation

Within the past few years the daily ageing tech-
nique has been increasingly used to investigate sur-
vival for fish younger than one year of age. The abil-
ity to measure age-specific abundance and survival is
a significant improvement over mortality estimation
based on size alone. Size in young fish is not a good
measure of age and a given size category often con-
tains a wide range of ages. Age-specific measures of
abundance may offer the possibility to investigate
subtle causes which affect the survival of young fish.
Some of the recent applications that rely on daily age-
ing include: Houde (1989), Owen et al. (1989),
Alhossaini et al. (1989), Fortier and Gagné (1990) and
Pepin (1991). These recent studies were largely con-
cerned with partitioning mortality to various causes
within the early life stages. This list is only a small
sample of the types of studies that are now being
undertaken.
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F1G. 14. Hypothetical survivorship curves (modified from
Slobodkin 1961). A type I curve has little mortality until senes-
cence; the Type II curve has an equal absolute amount of mortal-
ity in all life stages; Type 11 is frequently used to model fish mor-
tality since it indicates that a constant proportion of the cohort
dies through time.

Fundamental Concepts of Mortality Estimation

Mortality is estimated by measuring the decline in
abundance of a cohort over a specific period of time.
A cohort is a closed or limited group of individuals
which, once born, can only decline in abundance. A
graph (Fig. 13) of cohort abundance shows that initial
abundance (Ng) is highest at hatch then decreases as
members are lost through starvation, predation, dis-
ease, and advection to areas where survival is dimin-
ished, among other causes. Before the development of
the daily increment ageing method, mortality was
estimated by enclosure experiments or field observa-
tions of the decline in abundance of progressively
larger size classes. The difficulty with this length-
based approach is that sources of mortality are often
time-specific (for example, advection events, timing
of food availability, presence of predators) and cannot
be discerned with length-based measures. Because
size, in general, is not a particularly good indicator of
age, length-based methods don’t track well-defined
cohorts, and, therefore, yield results which are often
too crude to be useful.

We can illustrate the patterns of mortality with the-
oretical survivorship curves (see Fig. 14, after
Slobodkin 1961). Such survivorship curves model the
shape of decline in abundance of a given cohort
through the cohort’s lifetime. The early life stages of
fishes are usually best modeled by type III curves. In
general natural mortality is extremely high during egg
and larval stages (for example, 2-10% per day in
plaice and clupeoids — Cushing 1975; Smith 1985),
decreases quickly during the juvenile period
(Dahlberg 1979; Crecco et al. 1983), becomes rela-



tively stable during adulthood, and then may increase
again in senescence (Vetter 1988). The most familiar
curve, type III, is represented by the often used equa-
tion for the negative exponential function:

(28) N,=NyeZ

By rearranging Equation 28 and taking logarithms, we

can solve for Z, effective total instantaneous mortality

between time 0 and ¢. Note that Z is, by convention, a
positive number.
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The relationship that we represent here is based on the

calculation of the instantaneous rate. This rate is not

as intuitive to understand as the actual survival rate,

S, where S = x’ , or the actual mortality rate, A, where
0

A=1-S=1- N . Such finite rates, often used to ex-

No
press larval survival or mortality, do not lend them-
selves to partitioning the components of mortality,
since they are not readily compared across different
units of time (e.g., a 10% per year mortality rate is not
the same as two periods of 5% mortality per 6-
months). In contrast, instantaneous rates are readily
additive.

The instantaneous mortality rate varies with the
ratio of abundances, where the ratio is simply the pro-
portion surviving. Hence, the above equation indi-
cates that mortality affects a constant proportion of
the population over time, say 10% of the remaining
fish die each day. Because this constant percentage is
taken from an ever-decreasing abundance, the abso-
lute numbers that die in each time period actually
decrease over time. Ten percent of 100 fish is 10
deaths, while 10% of the remaining 90 is 9, and so on.

Total mortality (Z) is usually modeled as Z =M +
F, where M is instantaneous natural mortality and F is
the instantaneous fishing mortality. Even in species
which are subject to commercial or recreational fish-
ing, fishing doesn’t usually occur in the first year of
life. Therefore, total mortality in the first year of life
is equal to natural mortality; Z = M. Actually M prob-
ably changes over the various life stages, and is best

n
represented as M = 2.M, |, where n = the number of
1=]
life stages included in the analysis. In most cases, M
is assumed to be an average of the M,’s.
The instantaneous mortality rate is often very high
initially, decreasing over time, and can be best repre-
sented by a curve in which mortality changes between
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FIG. 15. Hypothetical survivorship curve when mortality changes
between life history stages.

developmental stages (Fig. 15). When abundance
drops off this quickly, the negative exponential equa-
tion will not match real-world data very well. One
alternative approach is to estimate mortality over only
a part of the lifetime. If the negative exponential still
gives a poor fit, more complex and less well-known
mathematical functions can be fitted to the data. The
Weibull function, used by engineers to predict equip-
ment failure, has been used to model adult mortality
data (Neilson et al. 1989). Lo et al. (1989) used the
Pareto function to simulate mortality of larval
anchovy. The goodness of fit of all of these functions
can be assessed with a Chi-Square test (see for exam-
ple Zar 1984, page 40). However, it is often preferable
to use the more familiar exponential function for
modelling mortality rates. The disadvantage in using
other functions is their lack of familiarity, lack of
comparability to other work and in the added com-
plexity in confidence interval estimation.

Conceptually, the estimation of mortality is very
simple. Cohort abundance is measured at some initial
period (Np) and again at some later time (), provid-
ing all the information required to solve Equation 28.
In actuality, obtaining these abundance estimates with
precision can be quite difficult, particularly in the lar-
val and juvenile stages. When sampling is limited, as
is often the case, the variance will be large and the
confidence intervals wide. With limited sampling the
estimate of abundance can be far from the true value.
Gear avoidance by larger fish is a particular problem
with mortality calculations (see Butler, this volume).
Additionally, larval distribution is patchy, especially
for marine species, and may therefore cause nonsensi-
cal estimates of Z where, due to sampling variability,
estimates of abundance are greater later in life than in
the beginning (N, > N).



Methods of Calculating Mortality

Traditionally, cohorts have been defined as all the
fish produced from the eggs spawned by a population
in a year. With the capability to age at the daily level,
the term may now be assigned to weekly or daily
“cohorts” produced within a spawning season.
Previously, within-season cohorts were identified by
methods based on length alone. The assignment of
age classes by following the progression in length
modes over time is often impossible due to the lack of
differentiated spawning pulses for many species (no
distinct modes are produced). Even if spawning
pulses occur, the variability in growth results in
blended mixtures of several age (daily) classes in a
length category soon after hatching. However, direct
estimates of age-specific mortality are possible with
the daily increment method.

While some investigators have simply compared
early versus late spawned larvae when looking for
evidence of within-year mortality, other time group-
ings are possible (e.g., weekly, biweekly or even
daily). One source of variance in these groupings is
the measurement error in reading and assigning age
(see Neilson, this volume); this assigned age is actu-
ally an estimate which can vary by several days, even
if it is unbiased. The variability of the age estimate
can be reduced by grouping young fish into multi-day
cohorts within the spawning season (see Crecco and
Savoy 1985, for their technique of cohort grouping).

Methods for estimating mortality can be divided
into direct and indirect approaches (Krebs 1972). The
direct approach is to mark and recapture cohort mem-
bers, following the decline in the numbers of marked
individuals over time. Indirect measures include (1)
analysis of catch-curve data, (2) correlations of natu-
ral mortality with other life-history parameters and (3)
estimation of death due to predation (Vetter 1988). Of
all methods, the catch curve method is most fre-
quently used for larvae and juveniles. The other two
indirect methods are rarely, if ever, used for young
fish. After a brief description of mark and recapture
techniques, the catch curve methods will be discussed
in more detail.

Mark and recapture

Mark-recapture techniques are commonly used on
adult fish to determine the sources of mortality
(Brownie et al. 1985; Burnham et al. 1987), but have
been infrequently used to estimate mortality in very
young fishes. In young fish, marking can be done en
masse (the marks are the same on all individuals) or
with tags which specifically identify each marked
individual. Small and very young fish are delicate and
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difficult to handle, hence the otoliths are usually batch
marked with chemicals (Hettler 1984; Schmidt 1984;
Tsukamoto 1985). Batch marking precludes tracking
individual fish, but is well suited to measuring
changes in abundance due to the large numbers which
can be marked. Juveniles are larger, easier to handle
and resilient enough to carry individual tags, such as
binary coded wire. Individual marking can be used to
test for more subtle differences in mortality between
groups (either within or between cohorts), and for
interactions with growth and/or location, although it is
usually more difficult to mark large numbers of fish.

Several important assumptions must be met before
using mark-recapture methods to estimate population
abundance and mortality. These assumptions include:
(1) the tagged fish are representative of the population
from which mortality information is sought, (2) there
is no emigration of tagged fish, (3) the number of
tagged fish that are released is known exactly, (4)
there are no tag losses and no misread tags, (5) sur-
vival rates are not affected by tagging, and (6) that the
fate of each individual tagged fish is independent of
other tagged individuals, among other assumptions
(Brownie et al. 1985; Burnham et al. 1987). None of
these assumptions is specific to otolith-tagged fish,
although tetracycline has been reported to both
enhance (Tsukamoto 1985) and reduce (McFarlane
and Beamish 1987) the survival of tagged fish relative
to control fish.

There are four major potential obstacles to the use
of otolith tags in estimating the mortality of larval
fishes: (1) mortality from handling and marking, (2)
intrinsically high mortality rates, implying that very
large numbers must be marked to get any returns, (3)
the lack of commercial and sport fisheries on the
young fish, requiring that the investigator recapture
the marked fish, and (4) biases introduced from net
avoidance and gear changes. As was the case with the
underlying assumptions, these limitations are not spe-
cific to otolith-tagged fish, and are often present in
other mark-recapture studies of young fish.

The mortality calculation from a mark recapture
study is simply the decline in the number of recap-
tures over time. Equation 28 can be rewritten to
reflect mortality estimation from tagging studies:

NrtzNIO et

where N,, is the number of recaptures at time ¢ and Ny
is the number of fish initially tagged and released.
Since there may be variability in the numbers recap-
tured, it is best to sample over several dates in order
to stabilize the estimate of mortality (see Gulland
1983, p. 110-115 for a description of this approach).



Catch curve analysis

The most frequently used indirect method of mortal-
ity estimation is catch curve analysis. Although used
mainly for adult fishes, catch curve analysis is also
useful during the early life stages (Crecco et al. 1983;
Essig and Cole 1986). The estimation of mortality in
larval fishes is based, almost exclusively, on catch
curve analysis, even though the methods section of
papers may not explicitly state this. Krebs (1972)
warns that indirect methods are based on the accep-
tance of certain assumptions and that these assump-
tions must be valid for these methods to be used cor-
rectly. This is especially true in catch curve analysis.
Catch-curves plot the frequency of fish grouped by
either size or age (Fig. 16). Because size is often a
poor indicator of cohort membership (May 1974;
Warlen 1981), age estimated from the daily increment
ageing technique is preferred. Abundance-at-age usu-
ally decreases exponentially, making the slope, Z,
(expressed as a positive number by convention), the
time-specific rate of mortality. The value for Z can be
estimated with either nonlinear regression of the
untransformed data or by converting abundance to log
of abundance (Ricker 1975). Conversion to log of
abundance will usually result in a more or less straight
line with a negative slope which can then be fit
through ordinary least squares regression (see Robson
and Chapman 1961; Ricker 1975; Draper and Smith
1981). Often the abundance in the youngest age cate-
gories (Fig. 16) will be less than the peak abundance
due to incomplete capture by the sampling gear, result-
ing in an ascending left limb. This ascending limb is
ignored when fitting the regression; only the data with
descending abundances are used in data analysis. The
absolute value of the slope of the fitted regression is an
estimate of Z, which in the case of unexploited early
life stages is equal to natural mortality, M.

There are two types of catch curves: time-specific
and cohort-specific. The time-specific catch curve is
often used with adults, and involves taking a single
sample at only one point in time. This method is not
applicable to within-season estimation of cohort mor-
tality of the early life stages. The extremely restrictive
underlying assumption for this catch curve is “that the
groups from which the data were collected must be in
steady state relative to each other” (Vetter 1988); this
means that the abundances of each class (i) at the
beginning of its life, N,,, must be equal to each other.
However, for larvae and juveniles the relative abun-
dance at one point in time is also a function of the
time-dependent intensity of spawning. The abundance
of eggs (larvae) produced during the spawning season
often follows a normal distribution or perhaps even a
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incomplete capture

Ln Abundance

Age —_—

FiG. 16. Simplified representation of a catch curve. Estimated
abundance is transformed to a logarithm. Incomplete capture of
the youngest fish produces an ascending limb on the left-hand side
of the graph. The right-hand side alone is used in mortality
estimation.

polymodal distribution, hence violating the assump-
tion of uniform and equal starting abundance for each
cohort within the spawning season.

The cohort-specific catch curve method, which is
similar to life-table analysis, is the method of choice
for within-season estimation of mortality in the early
life stages of fishes. The cohort-specific catch curve is
based on sequential sampling of the abundance of a
single identifiable group through the life stage of
interest (Fig. 16). For larvae this could be a single
week’s production sampled in subsequent weeks (see
Crecco and Savoy 1985), or more simply, a two point
estimate of mortality based on the abundance of a dis-
crete cohort at two different ages. If mortality is not
constant between sampled ages, a curved catch curve
will result. If this happens, mortality can be estimated
for portions of the cohort’s life, but there will be no
single number which describes mortality.

The cohort-specific method is subject to several
assumptions which must be met: (1) the samples are
representative of the entire population (usually that
they are randomly drawn), (2) the population is not
subject to migration or differential gear selection
with age (constant catchability, ¢), and (3) cohorts
must be identifiable and reliably defined (Vetter
1988). Often, several of these assumptions are vio-
lated in early life stages because of changes in behav-
ior, habitat and gear used for capture. For example,
larger larvae are more capable of avoiding the net
(assumption 2 of constant catchability) and a decline
in abundance can be due both to mortality and net
avoidance. Net selectivity may also result from
changes in diurnal behavior (May 1974), such as the
initiation of diel migrations as the larvae mature. This



change in habitat, e.g. planktonic to benthic, can also
coincide with the onset of schooling or territoriality,
which in turn can alter the density of fish and their
catchability. Density of larvae therefore is not
directly comparable to density of juveniles. In this
case, the survivorship curves must be segmented by
age/size stanzas, and mortality obtained separately
for each stanza. The slope of the catch curves, Z, can
then be compared among stanzas.

In normal practice, the actual abundance, »,, is not
incorporated into catch curves, but rather the surro-
gate measurement of catch-per-unit effort, C./f, is esti-
mated. The equation for catch is

C= qut

where f is sampling effort, and g is the catchability
coefficient. It can be rewritten to give catch-per-unit
effort:

Clf= gN.;.

In other words, catch per unit effort is assumed pro-
portional to abundance. The equation for mortality
can be rewritten, In{N,/Ny} = —Z,, in catch-per-unit
effort terms:

G

f_r= qut= q.f:
Co qoNo  qofo
Jo

It is relatively easy to standardize sampling effort and
thus set f; and f; equal to each other. It is often
assumed that g, and g, are also equal, or that any dif-
ferences in g are attributed to net avoidance and extru-
sion. Correction factors are added in an attempt to
equalize abundance frequencies. If the assumption of
equal catchability is not met, mortality estimates
derived from catch curves will not reflect true rates.
Because of size-related changes in catchability,
determination of absolute mortality rates can be diffi-
cult for early life history stages, even with the advan-
tage of daily ageing. Accordingly, Hoenig et al.
(1990) introduced a technique to compare the relative
survival of two cohorts of fish spawned in the same
season (for example early versus late spawned). This
method can be used when catchability, g, is not equal
between the two groups. It can also be used when
patchiness is great and when the estimated ratio of
absolute abundances, N,/N,, is nonsensical (>1).
Hoenig et al. (1990) used the ratio of catches of early
to late spawned larvae which are sampled at a point in

4
90

Zt = Zr

€ €

time, ¢. The equation for the ratio is, R, = %, where
E:

C;, and Cg; are the catches of late and early spawned
cohorts, respectively. Fish are sampled for two, or
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preferably more, times and the log of R, is plotted on
t. The slope of this straight line is an estimate of the
difference in instantaneous mortality rates between
the two groups of fish. This ratio estimator rests on
the assumptions that (1) there is no immigration or

emigration from the study area, and (2) the ratio of

q

catchability coefficients, q—' , of the groups does not
0

change over the time period studied. This method can
be used to compare the relative survival of groups such
as early and late spawned larvae even though the num-
bers spawned in each group, Ny, are unequal. This
method may be useful when assumptions of equal
catchability can’t be proven. However, it should be
noted that the second assumption, that of a constant
ratio of catchability coefficients, is difficult to test.
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