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Abstract. Recent studies using otolith microstructure analysis have suggested that the duration of the juvenile stage in
anchoveta (Engraulis ringens) is shorter than previously suspected, which suggests that the ages being entered into the

traditional age-based stock assessment are incorrect. However, the interpretation of young pelagic fish otoliths remains
problematic. To clarify the age interpretation of larval and juvenileE. ringens, newly hatched larvaewere reared in a quasi-
natural environment for periods of up to 103 days. The sagittal otoliths were subsequently examined and measured by

international otolith experts in a double-blind workshop study. The young anchovy could be aged both accurately and
precisely using otolith microstructure, after measures were taken to correct for unresolvable increments formed
immediately after hatch. The presence of a fast-growth transition zone characterised by either considerable splitting or

subdaily increments or both was confirmed. This study confirms the hypothesis of rapid growth and young age through the
juvenile stage for anchoveta, suggesting that a critical appraisal of the annual age determinations used as the basis for
anchoveta stock assessment is warranted. The otolith interpretation principles outlined in this study may apply broadly

across many small pelagic fish species.
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Introduction

In temperate ecosystems, anchovies (Engraulis spp.) are short-
lived, small pelagic fishes, with a maximum life span ranging
from 4 to 5 years and a maximum asymptotic length ranging

from 16 to 19 cm (Iversen et al. 1993; Khemiri et al. 2007;
Uriarte et al. 2016). Recent studies using otolith microstructure
analysis have suggested that the duration of the juvenile stage is

shorter and daily growth rates are faster than previously
recognised in some species (La Mesa et al. 2009; Aldanondo
et al. 2011; Cerna and Plaza 2016), including the commercially

important anchoveta (Engraulis ringens) in the Humbolt
Current systemof the South Pacific (Pikitch et al. 2012). Under a
‘fast-growth’ scenario, anchoveta would reach their asymptotic
length much more quickly than previously believed, and the

time required to reach sexual maturity would be reduced to half
(i.e. ,12 cm at ,180 days). This scenario implies that tradi-
tional age-based stock assessment methods, which depend upon

age-structured catches of the previous years, would produce

inaccurate estimates of both current biomass and predicted total
allowable catch (TAC; Cerna and Plaza 2016). However, the
‘fast growing and young age’ hypothesis based on otolith
microstructure is still controversial due to the possible existence

of double or triple subdaily growth increments in the juvenile
region of the otolith in some anchovy species (Cermeño et al.

2006, 2008; Arneri et al. 2011).

To address the problematic interpretation of primary growth
increments, Cermeño et al. (2008) compared two interpretation
criteria for otolith growth increments in Engraulis encrasicolus

in the Bay of Biscay: individual mark reading (IMR) and group
band reading (GBR). Under the IMR interpretation, each growth
increment was considered to have formed daily regardless of its
appearance, whereas in the GBR interpretation each set of

closely linked growth increments was considered to make up a
daily increment. Cermeño et al. (2008) concluded that the GBR
was the more reliable criterion as an ageing procedure for

E. encrasicolus, but lacked wild known-age fish to test their
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hypothesis. Conversely, Plaza and Cerna (2015) reported a
closer correspondence between known daily age and the total

number of increments when paired increments in a transition
zone were counted separately in reared juvenile E. ringens.
To resolve this ongoing controversy, and to develop criteria for

correctly interpreting daily growth increments in sagittal oto-
liths of juvenile E. ringens, an international laboratory-based
workshop of scientists with experience in otolith microstructure

analysis conducted a double-blind exercise on 9–12 December
2017 in Valparaiso, Chile. The results of this workshop were
based on known-age fish reared under quasi-natural conditions,
with this basis separating the present study from all other

published studies of anchovy age determination.

Materials and methods

Laboratory and field samples

Known-age larval and juvenile anchoveta E. ringenswere reared
from hatch in an outdoor quasi-natural seawater ‘pond’ enriched
with nitrates and phosphates to better mimic the natural envi-
ronment (Plaza and Cerna 2015). Newly hatched larvae were left

in this system without additional management and sampling. At
Day 52 after hatching, surviving juveniles were transferred to a
rearing tank, where water temperature ranged from 14 to 188C
(mean� s.d., 15.9� 0.78C). Juveniles were fed twice daily with
fractionated pellets (5812 Biomarine 2 mm; www.biomar.com,
accessed 17 December 2018) designed for marine fish. Fish were

periodically sampled from the juvenile rearing tank, and otoliths
were removed from the sampled fish. Sagittal otoliths were
prepared for otolith microstructure examination following the
slide-glass embed method (Plaza et al. 2005).

Review of known age juvenile otoliths

A subsample of 13 prepared otoliths from the rearing study was
examined at the workshop. All samples were blind labelled; thus,

the true age of the fish was unknown to workshop participants at
the time of ageing. Each of 13 the otoliths was independently
examined and aged only once by all 9workshop participants, both

under a compound microscope (Axio Lab1; ZEISS; www.zeiss.
com, accessed 17 December 2018), at magnifications from 400�
to 1000�, and from digital images, with no discussion or com-

parison of interpretations until completion of the age determina-
tions. A distinct check was formed on the date of transfer of the
fish from the pond to the rearing tank at Day 52; therefore, all
workshop participants recorded the age fromwhat was presumed

to be the hatch check to the transfer check (ZonesAþB), and then
again from the transfer check to the edge of the otolith (Zone C;
Fig. 1). Zone A was defined as the region from the hatch check to

the beginning of a transition zone interpreted as either broad and
split or narrowand numerous growth increments, whereas ZoneB
was defined as the transition zone. Ages were not determined for

Zones A and B separately. Age determination accuracy and bias
was evaluated through comparison with the known age of each
otolith, whereas ageing precision was measured with the index of

the average percentage error (IAPE; Beamish and Fournier 1981)
and the CV (Chang 1982).

The relationship between the known age after hatching and
the number of increments formed until the date when fish were

killed was determined using linear mixed models (LMM), with

the number of increments formed after hatching as the depen-
dent variable, the total age as a main effect and the workshop
participants as a random effect. Similarly, a LMM was used to
examine the relationship between increment number and known

age after the transfer check. Student’s t-test was used to test
whether the slope was significantly different from 1.

Results and discussion

Age determination in Zone C

The age estimates for Zone C (the outer region) were analysed
first because this zone was considered easily interpreted. A
graph of elapsed time v. increment count suggested that the daily

growth increments were interpreted accurately (on average)
over a post-check period of 16–51 days, with no appreciable bias
and moderate precision (Fig. 2a; mean CV¼ 6.4%; IAPE¼
4.6%). A LMM was used in a more rigorous test, with the
number of increments after the otolith’s natural tag as
the dependent variable, the known age after transference from
the pond to the rearing tank as the independent variable and the

workshop participants as a random effect. The model was sig-
nificant, the intercept was not significantly different than
0 (Table 1) and the slope was not significantly different from 1

(t-test, t1,115¼ 1.91, ta/2¼ 1.98). Nor were any of the random
effects significant (Table 1). These results demonstrate that
anchovy larvae form a continuous series of daily growth

increments through at least a portion of the juvenile stage, and
that these increments were interpreted correctly by the work-
shop participants.

Age determination in Zones A1B and total age

None of the workshop participants correctly estimated the
known stage duration of Zones AþB, which was 52 days. On
average, the mean (�s.d.) daily increment count through Zones

AþBwas 42.5� 2.2 (range 38–45 days), which underestimated
the true age by ,10 days (Fig. 2b; CV¼ 9.4%; IAPE¼ 7.0%).
Similarly, none of the participants accurately estimated the total

age of the juveniles, underestimating by an average of 10 days
(Fig. 2b). Overall ageing precisionwas slightly better because of
the better-defined Zone C increments; the mean CV of the total

Zone C Zone B Zone A

Pr

Fig. 1. Photograph of a sagittal otolith of a juvenile Engraulis ringens of

4.5-cm total length, illustrating the three characteristic microstructural

zones. Zones A and B were formed while the specimen was maintained in

an artificial feeding system with nutrients that mimicked the natural

conditions. Zone C was formed once the specimen was transferred to an

artificial feed system. P, primordium. Scale bar: 15 mm. Image reproduced

from Plaza and Cerna (2015).
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Table 1. Summary statistics from a linear mixed model (LMM) to evaluate the relationship between the number of growth increments (dependent

variable), the known age of the juvenileEngraulis ringens (independent variable) and theworkshop age readers (shown as two-letter abbreviations) as

a random effect

Separate LMMmodelswere fitted for ZoneC, when specimens were transferred to an artificial feeding system, and for ZonesAþBþC,with total age spanning

from hatching to the sacrifice date of juveniles. CL, confidence limit

Zones Effects Estimates Coefficient s.e. d.f. t Lower CL Upper CL P-value

Zone C Fixed Intercept 0.66 0.53 8 1.24 �0.40 1.71 0.25

Known age 0.97 0.02 107 59.51 0.94 1.00 ,0.001

Random AH 0.05 0.39 107 0.13 �0.72 0.82 0.90

AT �0.63 0.39 107 �1.63 �1.40 0.14 0.11

CR �0.05 0.39 107 �0.14 �0.82 0.71 0.89

FC �0.16 0.39 107 �0.41 �0.93 0.61 0.68

GM 0.05 0.39 107 0.13 �0.72 0.82 0.90

GP 0.19 0.39 107 0.49 �0.58 0.96 0.63

JC �0.05 0.39 107 �0.14 �0.82 0.71 0.89

MG �0.05 0.39 107 �0.14 �0.82 0.71 0.89

SC 0.66 0.39 107 1.71 �0.11 1.43 0.09

Zones AþBþC Fixed Intercept �5.98 2.95 8 �2.03 �11.83 �0.13 0.08

Known age 0.95 0.03 107 27.96 0.86 1.02 ,0.001

Random AH 2.08 1.41 107 1.50 �0.71 4.88 0.14

AT 0.11 1.41 107 0.08 �2.68 2.90 0.94

CR 2.42 1.41 107 1.72 �0.38 5.21 0.09

FC �2.85 1.41 107 �2.03 �5.64 �0.06 0.05

GM 0.28 1.41 107 0.20 �2.51 3.07 0.84

GP 1.88 1.41 107 1.34 �0.91 4.68 0.18

JC �5.25 1.41 107 �3.73 �8.04 �2.46 ,0.001

MG �1.52 1.41 107 �1.08 �4.31 1.27 0.28

SC 2.85 1.41 107 2.02 0.06 5.64 0.05
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Fig. 2. Relationships between known age and increment number of otoliths from reared juvenileEngraulis ringens, counted by nine

workshop participants. (a) Relationship between the known-age after the formation of the transfer check and increment count

(Zone C). (b) Number of increments visible in Zones A and B in the otoliths of known-age juveniles. The mean count (dashed

lower line) was 42; the actual duration was 52 days (upper continuous line). (c) Upper and lower 95% confidence limits (dotted

and dashed lines) for increment count as predicted by a linear mixedmodel. The 1 : 1 line is shown as a solid line in panels (a) and (c).

Scale bar: 5 mm.
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increment counts (Zones AþBþC) across all workshop parti-
cipants and otoliths was 6.3% (IAPE¼ 4.9%). The LMM was
significant (Table 1; P, 0.001), with a slope (0.95) not sig-
nificantly different from 1 (t-test, t1,115¼ 1.14, ta/2¼ 1.98),

but the 95% confidence interval (CI) of the intercept did not
include zero (mean of �6.0). Most of the age readers (random
effects) were not significant (Table 1; t-test, P, 0.001). The

combination of a negative intercept (indicating age underesti-
mation) and a slope of ,1 (indicating additional age under-
estimation) in the LMM shows that increment count

underestimated total age by,11 days in a 100-day-old juvenile.
The 95% CI of the LMM predictions (barely) included the
known age (Fig. 2c), although the 90% CI did not.

Missing increments around the core

To determine whether there were unseen increments around the
otolith core, increment counts at a fixed otolith radius were
compared between larval and juvenile anchovy otoliths.

Known-age (15-day-old) anchovy larva otoliths, coming from a
parallel experiment, were very small and thin, and required no
polishing to reveal 14–15 daily increments at an average otolith

radius of 24.73 mm (Fig. 3a). However, when this same otolith
radius was overlaid on the much-thicker (despite polishing)
known-age juvenile anchovy otoliths, only five to eight incre-

ments were visible (Fig. 3b). Thus, some increments became
unresolvable in the juvenile otoliths.

Estimation of missing growth increments around the core

Otolith radius (OR) increased exponentially with daily age of
larvae (OR¼ 6.79� exp(0.08� age)�1; F¼ 3204; P, 0.001;
R2¼ 0.96). To estimate the number of daily increments theo-
retically present around the core in an otolith of a given radius,

the same data were natural log transformed and refitted to pre-
dict age, as follows:

Age ¼ 11:5� lnðORÞ � 21:4

where F¼ 3204; P, 0.001 and R2¼ 0.94 (Fig. 4).

Entering the OR of the innermost visible increment as the

independent variable into the above equation yielded estimates
of 7–15 unresolved increments in the workshop otoliths
(Table 2). Once the number of unresolved increments was added

to the observed increment number, total estimated ages were
not significantly different (�3.5 days) from the known ages of
68–103 days (Table 2; t-test, P¼ 0.94).

The steepness of the otolith–age exponential regression is a

reflection of growth rate, and thus affects the predicted number
of unresolved increments within a given OR. Slower growth
would produce a larger number of unresolved increments. The

growth rate of the known-age anchovy larvaewas very similar to
that measured in wild fish (Contreras et al. 2017), suggesting
that the fitted curve is broadly appropriate in both reared and

(a) (b)

Fig. 3. Otoliths of (a) a known-age (15-day-old) larva and (b) a juvenile Engraulis ringens. (a) Fifteen daily

growth increments are seen in the otolith from the 15-day-old larva. (b) The otolith of the juvenile is annotated with

a line of the same length as the diameter of the larval otolith on the left. Fewer increments are visible within the

marked diameter, even though they must be present. Scale bars: 5 mm.
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Fig. 4. Sensitivity analysis of the relationship between otolith radius and

age in Engraulis ringens larvae as a function of variable otolith growth rates.

The differently dotted lines represent simulated variations in growth rates

around the original exponential curve, represented by the solid black line.
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wild fish. However, growth rate variations across years are
inevitable. Sensitivity analyses demonstrated that a�20% vari-

ation in growth rate resulted in �3 days difference in the
estimated number of unresolved increments for a given otolith
(Fig. 4), indicating that the adjustment for unresolved incre-
ments was not particularly sensitive to growth rate.

Sources of age underestimation

The close correspondence between the number of days after
natural tag formation and the number of observed post-tag

growth increments is clear evidence of a daily periodicity of
otolith growth increment formation during the juvenile stage of
this species, which matches the results of Plaza and Cerna

(2015). However, some explanation is needed of the asynchrony
between the total known age and the total number of growth
increments in the juveniles. The first and most reasonable
explanation is that the transition zone was interpreted incor-

rectly; indeed, all workshop participants interpreted the transi-
tion zone as consisting of broad, split increments (e.g. GBR;
Cermeño et al. 2008). If the ‘subdaily’ increments in the tran-

sition zone were interpreted as daily (e.g. IMR; Cermeño et al.

2008), overall age estimates increased by,13 days. Key to this
scenario is that the IMR-interpreted age only corresponds with

the actual age if it is assumed that the daily increments first start
to form 3 days after hatch (as reported by Hernández and Castro
2000), and that all larval daily increments can be seen in older
fish. The following paragraphs demonstrate that this assumption

is not warranted, and thus the IMR approach is not valid in
anchovy.

Missing rings around the core and occurrence of a second
check

In many small pelagic fish species, daily increments appear not
to form until well after hatch; for example, in known-age herring

(Clupea harengus) larvae, increment deposition rates of,1 day
are always observed, particularly in larvae growing less than
0.4 mm day�1 (Geffen 1982; Folkvord et al. 2000; Feet et al.
2002). Given that there was no physiological explanation for the

absence of daily increment formation in these species, the
apparent anomaly remained until Campana et al. (1987) dem-
onstrated that the observed rate of OR increase in larval herring

otoliths would necessarily form increments with a width that

was less than the theoretical resolution limit of a light micro-
scope. The number of unresolvable increments was exactly

equal to the observed 15- to 20-day age underestimation, thus
explaining the apparent anomaly. The age underestimation was
exacerbated in larger otoliths because of the difficulty of pol-
ishing exactly to the midplane of the otolith. The results of the

present study indicate that exactly the same phenomenon
appears to apply to larval anchovy.

The core area in otoliths from most larval fishes is usually

characterised by a central opaque primordium surrounded by a
diffuse zone with no visible increments until the appearance of a
prominent concentric hatch check (Campana and Neilson 1985;

Campana 1992; Ding et al. 2015). Species with a prolonged
embryonic period, such as salmonids, may form multiple incre-
ments medial to the hatch check (e.g. Radtke and Dean 1982;
Moyano et al. 2012). Distal to the hatch check, clear and

distinctive daily growth increments are formed in many species
(Zhang and Runham 1992), whereas other species may form a
sequence of very narrow growth increments, followed by either

or both a second prominent check or an abrupt shift to wider
distinctive increments (Islam et al. 2009; Leander et al. 2013).
This latter pattern was observed in the present study in sagittae

of reared juvenile E. ringens.
The existence of a second check distal to the hatch check, as

previously observed in E. ringens, has been linked to the shift

from endogenous to exogenous feeding after yolk sac absorption
in demersal fishes, and to the extrusion of live larvae in the case
of viviparous fishes, such as Sebastes thompsoni (Kokita and
Omori 1998) and Sebastes inermis Plaza et al. 2001). In other

studies of pelagic fish larvae, the first daily increment forms
either immediately (Zhang and Runham 1992; Alemany and
Alvarez 1994; Aldanondo et al. 2008) or a few days after

hatching on the date of yolk sac depletion (Watanabe and Kuji
1991; Xie et al. 2005). Although Hernández and Castro (2000)
reported that the first daily increment in anchoveta formed

3 days after hatching, narrow increments have been observed
between the hatch check and the yolk-sac check in reared larvae
of many pelagic species, such as C. harengus (Geffen 1982),
E. encrasicolus (Palomera et al. 1988) and Sardina pilchardus

(Alemany and Alvarez 1994). Indeed, Aldanondo et al. (2008)
confirmed that the first daily increment was laid just after
hatching in larval E. encrasicolus, after which up to four narrow

daily increments were formed before yolk sac depletion.

Table 2. Illustration of the daily age correction in five known-age juveniles of Engraulis ringens

Age was determined based on increment counts through direct observation under a light microscope, as well as from digital images of the same otolith.

The number of unresolved increments estimated to have been present before the first visible increment (from Fig. 3b) is also shown, as is the total resulting

estimated age

Known age of juvenile

(days)

Direct age determination

(days)

Image-based age determination

(days)

Estimated number of missing

increments

Corrected estimated age

(days)

68 66 64 7.5 71.5

75 64 62 11.0 73.0

82 74 70 9.5 79.5

89 84 80 7.5 87.5

103 90 91 15.0 106.0
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This type of otolith growth pattern is expected to apply to the
otolith core area of E. ringens as well.

Split growth increments in the otolith transition zone

The workshop review of known-age juvenile anchovy otoliths
reared under quasi-natural conditions confirmed that young

anchovy could be aged precisely using otolith microstructure,
but that they could only be aged accurately after measures were
taken to correct for bias due to unresolved increments close to

the core. These corrective measures (the equation describing
larval age as a function of OR) are readily defined for any new
species, but the parameters of the equation are almost certainly
species specific. In addition, the present study suggests the

presence of a fast-growth transition zone in juvenile anchoveta
otoliths characterised by either considerable splitting or sub-
daily increments or both. Such an interpretation is consistent

with the GBR interpretation proposed by Cermeño et al. (2006,
2008) for E. encrasicolus in the Cantabric Sea, rejects the IMR
criteria for counting every individual increment in the transition

zone and is fully consistent with widespread criteria for reading
and interpreting daily growth increments in many other species
(Campana 1992). Finally, and perhaps most importantly, the

present study confirms the hypothesis of rapid growth and young
age for this species in the Humboldt Current system, which casts
doubt on the accuracy of existing yearly age determinations. A
critical appraisal of the annual age determinations used as the

basis for anchoveta stock assessment appears warranted.

Conclusion

We anticipate that the otolith interpretation principles outlined
here can be applied broadly across many small pelagic fish

species from temperate waters, most of which have been con-
sidered to grow slowly during their first week or two of life.
Failure to correct for unresolvable increments formed after
hatch, and the presence of subdaily increments in the juvenile

transition zone, could introduce serious age-specific error into
any daily age assignment.
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