
THE BRASCAMP–LIEB POLYHEDRON

STEFÁN INGI VALDIMARSSON

Abstract. A set of necessary and sufficient conditions for the Brascamp–
Lieb inequality to hold has recently been found by Bennett, Carbery,
Christ and Tao. We present an analysis of these conditions. This analy-
sis allows us to give a concise description of the set where the inequality
holds in the case where each of the linear maps involved has co-rank 1.
This complements the result of Barthe concerning the case where the
linear maps all have rank 1. Pushing our analysis further, we describe
the case where the maps have either rank 1 or rank 2.

A separate but related question is to give a list of the finite number
of conditions necessary and sufficient for the Brascamp–Lieb inequality
to hold. We present an algorithm which generates such a list.

1. Introduction

The Brascamp–Lieb inequality unifies and generalises several of the most
central inequalities in analysis, among others the inequalities of Hölder,
Young and Loomis–Whitney. It has the form

(1)
∫

H

m∏
j=1

f
pj

j (Bjx) dx ≤ C

m∏
j=1

(∫
Hj

fj

)pj

where H and Hj are finite dimensional Hilbert spaces of dimensions n and
nj respectively, Bj : H → Hj are linear maps, pj are non-negative numbers,
C is a finite constant and fj are non-negative functions. We shall refer to
((Bj), (pj)) as the Brascamp–Lieb datum for this inequality.

The inequality was first written down by Brascamp and Lieb in [5] where
they pose two questions. The first one is to find the necessary and sufficient
conditions on the datum ((Bj), (pj)) for (1) to hold and the second one is to
determine when the best constant for (1) is attained by a tuple of centred
gaussian functions, fj(x) = e−〈x,Ajx〉 with each Aj a symmetric and positive
semi-definite linear transformation.

In [7] Lieb showed that gaussians exhaust the inequality in the following
sense.

Theorem 1 (Lieb’s Theorem). Let C((Bj), (pj)) be the smallest constant
we can take in (1) so that it holds for all tuples (fj) of integrable functions
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and let Cg((Bj), (pj)) be the smallest constant we can take so that it holds
for tuples of centred gaussians. Then

(2) C((Bj), (pj)) = Cg((Bj), (pj)).

Brascamp and Lieb proved this theorem in the case when each Bj has
rank one already in [5]. With this theorem, the fundamental question of
when is C((Bj), (pj)) finite has been reduced to the question of when is
Cg((Bj), (pj)) finite. In [3] and [4] the question is further reduced by showing
that the Brascamp–Lieb inequality (1) holds for the datum ((Bj), (pj)) if and
only if we have

(3) dim V ≤
∑

j

pj dim(BjV )

for all subspaces V of H, the scaling condition

(4) dim H =
∑

j

pj dim(Hj)

holds and

(5) pj ≥ 0

for all j.
Let us fix the maps Bj . Then for which tuples (pj) does the Brascamp–

Lieb inequality hold, that is which tuples satisfy (3), (4) and (5)?
Since each of the conditions is a linear inequality or equality in the vari-

ables (pj) and since the coefficients in (3) are dimensions of spaces which
can only range through a finite set, it is clear that the set of tuples (pj) such
that these conditions hold is a convex set in Rm whose boundary consists of
a finite number of hyperplanes. It is thus a polyhedron and we shall refer
to it as the Brascamp–Lieb polyhedron for the m-transformation (Bj).

The scaling and positivity conditions (4) and (5) imply that this polyhe-
dron lies in the intersection of a hyperplane and the first 2m-tant in Rm.
What portion of this intersection the polyhedron occupies can vary greatly.
In particular, for Hölder’s inequality the conditions in (3) do not give any re-
strictions and the polyhedron is this whole intersection. On the other hand,
(3) for the Loomis–Whitney inequality restricts the polyhedron to the one
point set (pj)1≤j≤n = ( 1

n−1)1≤j≤n.
The conditions (3), (4) and (5) give a description of the Brascamp–Lieb

polyhedron, S, in the sense that if we want to check whether a particular
point (pj) belongs to S then we can do so by checking (pj) against each one
of these conditions and if it satisfies them all then the point belongs to the
polyhedron. However, for two reasons it might be considered of benefit to
give an alternative description. Firstly, the shape of the polyhedron can still
seem quite unclear, in particular we do not have a result which says that the
point (pj) lies in the polyhedron if and only if it is of some prescribed form.
Secondly, there is the question how many conditions are included in (3). Al-
though, as we said above, it is only a finite number because the dimension
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of the spaces involved can only range through a finite set, it remains unclear
how to get an exhaustive list of the conditions as it would seem to require
examining each subspace V of H. In this note, we will address both of these
problems.

For the first problem, it is known by the Weyl–Minkowski theorem that
a bounded polyhedron is a polytope, that is the convex hull of a finite set
of points. Furthermore, it is a consequence of Carathéodory’s theorem that
each point in a bounded polyhedron can be written as a convex combination
of the vertices of the polyhedron. Here we say that a point (qj) is a vertex
of a polyhedron if there exists a hyperplane such that the intersection of the
hyperplane and S is the singleton {(qj)} and by writing (pj) as a convex
combination of the vertices we mean that (pj) lies in the polyhedron if and
only if we can write

pj =
s0∑

s=0

λsqs,j

for all j, where λs ≥ 0,
∑

s λs = 1 and qs for s = 1, . . . , s0 is an enumeration
of the vertices. For these standard results in convexity see for example [2].

The problem of determining the vertices of S has until now only been
resolved in the rank-one case. There we have the following result.

Theorem 2 (Rank one case, Barthe [1]). Let Bjx = 〈vj , x〉 for vectors vj

in H. Then (qj) is a vertex of S if and only if qj = χI(j) where χI denotes
a characteristic function of an index set I such that (vj)j∈I forms a basis
for H.

This result is reproved in [6] and [4].
In Section 2 we present a new analysis of the properties of the vertices

which has the benefit that aside from yielding a new proof of the result of
Barthe it makes it possible to determine the form of the vertices in several
other cases.

Theorem 3 (Rank n−1 case). Assume Bj all have rank n−1 and for each
j let {vj} be a nonzero element in the kernel of Bj. Then (qj) is a vertex
of S if and only if qj = 1

n−1χI(j) where I is an index set such that (vj)j∈I

forms a basis for H.

The main lemma for our treatment of these results is the following.

Lemma 4. Let (qj) be a vertex of S. Then the support of q, {j|qj 6= 0},
can have at most n elements where n is the dimension of H.

Finally, we will also push the analysis further to give a description of the
vertices in the case when each Bj has rank either 1 or 2.

In Section 3 we address the second problem mentioned above, how can
we know which conditions are included in (3). To state the result we make
the following definition.
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Definition 5. Let (Vk)k∈K be a family of subspaces of a common space.
Then the lattice of (Vk), denoted L(Vk) is defined as follows

(1) Vk ∈ L(Vk) for each k ∈ K;
(2) V1 ∩ V2, V1 + V2 ∈ L(Vk) for any V1, V2 ∈ L(Vk).

We neither require {0} nor the whole space to be elements of the lattice.

Remark 6. The lattice of a given family of spaces is the smallest set of
spaces which contains each member of the family and is closed under the
operations of set intersection and vector space addition; we say that the
lattice is generated by the family.

Definition 7. For the m-transformation (Bj) we let L(Bj) denote L(ker(Bj)),
the lattice generated by the kernels of Bj .

In Section 3 we prove the following theorem:

Theorem 8. Let ((Bj), (pj)) be a Brascamp–Lieb datum. Then a necessary
and sufficient condition for the the Brascamp–Lieb constant C((Bj), (pj)) to
be finite is that (4) and (5) hold and (3) holds for each subspace in L(Bj).

However, even with Theorem 8 there remain some questions. Firstly, do
we know that the number of elements in L(Bj) is finite? The answer to this
seems to be no in general, see [8] for an overview discussion on lattice theory,
to which this question belongs. However, it is clear that the number of
elements is countable and it is straightforward to generate a list of elements
which we can check (3) on in sequence. So for computational purposes, a
more important variant of this question is: how do we know when to stop,
that is, when can we be sure that we have got a list of all the conditions
included in (3)? We will address this question towards the end of Section 3.

Remark 9. It is a comment of Michael Christ that by working through the
induction proof of the Brascamp–Lieb inequality in [3] an algorithm which
gives necessary and sufficient conditions for C((Bj), (pj)) to be finite can be
found. The proof we give of Theorem 8 is along these lines. The proof also
establishes that the lattice L(Bj) is sufficient.

This note forms part of my PhD thesis from the University of Edinburgh.
I would like to thank my supervisor Tony Carbery for his support and in
particular for discussions relating to the material in Section 3.

Part of this work was completed during a stay at the University of Athens.
I would like to thank Apostolos Giannopoulos for his hospitality and for
helpful comments.

2. The vertices of S

Proof of Lemma 4. Assume U and W are two subspaces of H such that
inequality (3) holds with equality for the point (qj) of S and U and W .
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Then we get that

(6)

∑
j

qj dim(BjU) +
∑

j

qj dim(BjW )

=
∑

j

qj (dim(BjU) + dim(BjW ))

=
∑

j

qj (dim(BjU ∩BjW ) + dim(BjU + BjW ))

≥
∑

j

qj (dim(Bj(U ∩W )) + dim(Bj(U + W )))

≥(dim(U ∩W ) + dim(U + W ))

=(dim U + dim W )

where we have used twice the fact that dim U + dim W = dim(U + W ) +
dim(U∩W ) for any subspaces U and W . Also for the first inequality we have
used that dim(BjU + BjW ) = dim(Bj(U + W )) and dim(BjU ∩ BjW ) ≥
dim(Bj(U ∩ W )). The second inequality follows since (qj) belongs to the
polyhedron and therefore the condition (3) holds with (qj) and both U ∩W
and U + W .

Since we are assuming that the beginning and end of this chain are equal,
we must in fact have equality all the way. This tells us that we have equality
in inequality (3) for U ∩W and U + W and that for all j such that qj > 0
we have

(7) dim(BjU) + dim(BjW ) = dim(Bj(U ∩W )) + dim(Bj(U + W )).

We note that so far we have proved the following.

Lemma 10. Let U and W be critical subspaces of H for a Brascamp–Lieb
datum ((Bj), (pj)). Then U ∩ W and U + W are also critical and for all j
such that pj > 0 we have that (7) holds.

Now, if (qj) is a vertex of S then we will have a set of indices, J , such
that

(8) qj = 0 for j 6∈ J

and a collection of subspaces, V, such that

(9) dim V =
∑

j

qj dim(BjV ) if V ∈ V.

A vertex of a polyhedron is the unique solution of the set of linear equations
which the facets adjacent to the vertex satisfy. Thus, the system (8), (9) of
linear equations determines the vertex (qj) uniquely.

Let us now apply row operations to this system to simplify it. By sub-
tracting the appropriate multiples of (8) from (9) we can substitute (9) with

(10) dim V =
∑
j∈J

qj dim(BjV ) for V ∈ V.
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Now, take U,W ∈ V. By the above discussion, we have U ∩W,U +W ∈ V
as well and furthermore, the equality for W can be deduced from the equality
for U ∩W , U and U + W as follows.(

dim(U ∩W ) =
∑
j∈J

qj dim(Bj(U ∩W ))
)

+
(

dim(U + W ) =
∑
j∈J

qj dim(Bj(U + W ))
)

−
(

dim U =
∑
j∈J

qj dim(BjU)
)

=
(

dim W =
∑
j∈J

qj dim(BjW )
)

where we have used (7) to simplify the right hand side. This shows that we
may remove the equation coming from W from (10) by row operations and
thus without affecting the solution set.

Let us try and remove as many equations from (10) as we can. First
of all, we may assume that {0} is not in V as (10) is content free for that
space. Let us then take a U1 ∈ V such that no proper subspace of U1 is in
V. Clearly such a space exists as we cannot have an infinite chain of nested
subspaces in H. Define VU1 := {W ∈ V : U1 ⊂ W}. Then all the equalities
for the subspaces in V can be deduced from the equalities for the subspaces
in VU1 . To see this we note that if W ∈ V \ VU1 then W ∩ U1 = {0} so the
equality for W can be deduced from the equalities for U1 and U1 +W which
are elements of VU1 .

Next, let U2 ∈ VU1 , U2 6= U1 be such that no subspace W ∈ VU1 lies
properly between U1 and U2. Then as in the last paragraph we see that all
equalities for subspaces in VU1 can be deduced from the equalities for the
subspaces in VU2 and the equality for U1. Continuing this process, we get a
flag U1 $ U2 $ · · · $ Us such that all the equalities for the subspaces in V
can be deduced from the equalities for the spaces in this chain.

Thus we have seen that by using row operations we can remove all the
equations from (10) except the ones coming from this flag, which we shall
refer to as U , and still have left the linear system

qj = 0 for j /∈ J ;(11)

dim U =
∑

j

qj dim(BjU) if U ∈ U(12)

which is equivalent to the original one. Since H is n-dimensional, U can
have at most n elements so the number of equations in (12) is at most n.
However, since the system (11), (12) is a linear system which has a unique
solution in Rm, there must be at least m equations in the system. Therefore,
there must be at least m− n elements not in the set J and so the solution
to the system (qj) can have at most n non-zero elements.
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This completes the proof of the lemma. �

The next lemma partly addresses the question how one can check that a
particular point is a vertex.

Lemma 11. Let a Brascamp–Lieb datum ((Bj), (pj)) be given and assume
that U = (U1, . . . , Us) is a flag in H, that is U1 $ U2 $ · · · $ Us = H, such
that (12) holds. Assume also that the inequality (3) holds for any space W̃
which can be added into the flag.

Then inequality (3) holds for any subspace W of H so the Brascamp–Lieb
inequality holds for this datum.

Remark 12. If U is a maximal flag we cannot add any subspace to the flag
so if we have a vector (qj) for which (12) holds for a maximal flag U then
(qj) is a vertex of the Brascamp–Lieb polyhedron. This is however not a
necessary condition for (qj) to be a vertex, see Remark 15.

Proof of Lemma 11. If we re-examine the calculations in (6) we see that if
we assume that (3) holds for U ∩W and U + W and it holds with equality
for U then we get that (3) holds for W .

Let us now define t0 ∈ {0, . . . , s} such that Ut0 ⊂ W but Ut0+1 6⊂ W . To
ensure that t0 is well-defined we allow it to take the value 0 in which case
we define U0 = {0}. We see that if (3) holds for W ∩ Ut0+1 and W + Ut0+1

then it holds for W . Since Ut0 ⊂ W ∩ Ut0+1 ⊂ Ut0+1 we see that (3) holds
for W ∩Ut0+1 by assumption. For W +Ut0+1 we argue inductively. We note
that W +Ut0+1 ⊃ Ut0+1 so we can repeat this process for that space, that is
find a t1 > t0 such that Ut1 ⊂ W + Ut0+1 but Ut1+1 6⊂ W + Ut0+1 and then
(3) for W + Ut0+1 will follow from the condition for (W + Ut0+1) ∩ Ut1+1

which lies between Ut1 and Ut1+1 and the condition for W + Ut1+1. This
process will give us a flag Ut0 ⊂ · · · ⊂ Utr which is a subflag of the flag U
and can therefore not contain more than s elements. Furthermore, this flag
has the property that to confirm that (3) holds for W we need only to check
that (3) holds for spaces V such that Ut ⊂ V ⊂ Ut+1 with t ∈ {t0, . . . , tr}.
Since W was arbitrary we have proved the lemma. �

Let us now list all the possible vertices in several cases. First let us assume
that all the maps Bj have the same rank.

Proof of Theorem 2. As before, we let (qj) be a vertex of the polyhedron
and J be the set of indices j such that qj > 0. If vj for j ∈ J do not span
H then we do not have a solution to the system (3), (4) and (5). To see
this, let V be a subspace of codimension 1 which contains vj for all j ∈ J .
Then V ⊥ lies in the kernel of all the relevant Bj . Therefore, testing (3) on
V ⊥ gives 1 = dim V ⊥ ≤

∑
j qj dim(BjV

⊥) = 0 which is impossible.
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This and Lemma 4 shows that |J | = n and for each j ∈ J there is a vector
vj such that vj ∈ ker Bj′ for all j′ ∈ J \ {j} but vj /∈ ker Bj . Define

Uj =
∑
j′∈J
j′≤j

span(vj′).

Then U = (Uj)j∈J is a maximal flag in H. With these definitions of J and
U we can see that (11) and (12) have the unique solution qj = 1 for j ∈ J
and qj = 0 otherwise. The note following Lemma 11 therefore gives that
each vector of this form is a vertex of the polyhedron. �

Proof of Theorem 3. With (qj) and J as before, we first note that if ker Bj

for j ∈ J do not span H then we do not have a solution to the system (3), (4)
and (5) as can be seen from testing (3) on a space V such that

∑
j∈J ker Bj ⊂

V and dim V = n − 1. This gives n − 1 = dim V ≤
∑

j qj dim(BjV ) =
(n− 2)

∑
j qj whereas the scaling condition (4) gives n =

∑
j qj(n− 1).

From this and Lemma 4 we then see that |J | = n. Also, if we define

Uj =
∑
j′∈J
j′≤j

ker Bj′

then U := (Uj)j∈J is a maximal flag in H. The set of equations (12) for this
flag becomes

sj =
∑
j′∈J
j′≤j

qj′(sj − 1) +
∑
j′∈J
j′>j

qj′sj j ∈ J

where sj := |{j′ ∈ J |j′ ≤ j}|. Since the number of terms in the first sum is sj

and the number of terms in the last sum is n−sj it is evident that qj = 1
n−1

for j ∈ J is a solution. Since the system has rank n this is the only solution
and since the flag is maximal we get a vertex for the polyhedron. �

2.1. Mixed rank one and two. We can push this analysis further and
examine the mixed rank case when each Bj has rank 1 or 2. Again, we
assume (qj) is a vertex of S and J and U = (U1 $ U2 $ · · · $ Us) are such
that (11) and (12) hold.

By subtracting the equation for Uk−1 from the equation for Uk we see
that we can replace (12) with

(13) dim(Uk/Uk−1) =
∑

j

qj(dim(BjUk)− dim(BjUk−1))

for Uk ∈ U , k ≥ 1 and with U0 = {0}. In this set of equations we note that
the coefficients multiplying qj sum up to the rank of Bj and the constant
coefficients sum up to dim H. Therefore, if we let J1 and J2 be the set of
indices from J for the rank 1 and 2 transformations in the set {Bj |j ∈ J}
respectively and let m1 and m2 be the number of elements in these sets then
the sum of the elements in the coefficient matrix of (13) equals m1 + 2m2.
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Furthermore, since the set of equations (13) uniquely determines (qj)j∈J and
|J | = m1 + m2 we get that s ≥ m1 + m2.

Now, for each j ∈ J1 the coefficients of qj in (13) must all be 0 except
one which must be 1. Therefore, at most m1 of the equations can contain a
non-zero coefficient for an element qj with j ∈ J1 and these equalities must
contain at least m1 of the non-zero coefficients in the matrix.

There are now two cases, either there is equality in each step of this
calculation, that is there are exactly m1 of the equations which have a non-
zero coefficient for an element qj with j ∈ J1 and these equations have only
these non-zero coefficients and there are exactly m2 equations left which
have all of the non-zero coefficients for the qj with j ∈ J2 which sum up to
2m2. Moreover, each of these m2 equations must have either one coefficient
equal to 2 and all other 0 or two coefficients equal to 1 and all other 0.
Otherwise, if any of this does not hold, then, by the pigeonhole principle,
there must be an equation among these, all of whose coefficients are zero
except one, for qj with j ∈ J2, which must be one.

Note that we have made heavy use of the fact that the coefficients in (13)
must all be non-negative integers and we may assume that no equation has
zero coefficients in front of all the qj as such an equation can be removed
from the linear system and the corresponding subspace can be removed from
the flag.

In the first case, we get that for each j ∈ J1, the relevant equation from
(13) takes the form 1 = qj . The left hand side must be 1 as we know that
0 < qj ≤ 1 for each j ∈ J . Let us say that this is the equation coming from
the quotient Ukj

/Ukj−1. From the fact that dim(Bj′Ukj
) = dim(Bj′Ukj−1)

for all j′ 6= j we get that the intersection of kerBj′ with Ukj
\ Ukj−1 is

non-empty. Now, Ukj−1 ⊂ ker Bj whereas Ukj
\ Ukj−1 contains no vectors

in kerBj so we see that kerBj′ ∩ (H \ ker Bj) is non-empty for any j′ 6= j.
Since dim kerBj = n− 1 we get by testing (3) on kerBj that

(14) dim(H)− 1 ≤
∑
j′ 6=j

qj′ dim(Bj′H).

Since we know that we have equality in (3) for H and since we have qj = 1
we get by subtraction that (14) must in fact be an equality.

All in all, we get by repeating this process, rearranging and carrying out
the reductions in the proof of Lemma 4 again that there exists a subspace
H1 of H such that dim BjH1 = 2 for all j ∈ J2 but H1 lies in the kernel of
all Bj for j ∈ J1. Furthermore, H1 is n−m1 dimensional, the cosets vj +H1,
vj ∈ im Bj for j ∈ J1, form a basis for H/H1 and qj = 1 for all j ∈ J1.

So we are left with a flag in H1 and m2 equations associated with it, all
of whose non-zero coefficients are for qj with j ∈ J2. If we have that one
of these equations has only one non-zero coefficient, which must then be 2,
then that equation must take the form 2 = 2qj . This we see since the left
hand side cannot be larger than 2 as qj is at most 1 and since we must
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always have

dim(Uk/Uk−1) ≥ dim(BjUk)− dim(BjUk−1)

so the coefficient on the left hand side must be as large as any coefficient
on the right hand side. Now, in the same way as before with the rank one
spaces we get that there exists a subspace H2 of H1 and a flag in H2 such
that all of the equations associated to this flag have the form

(15) tj,j′ = qj + qj′

for some j, j′ ∈ J2,1 ⊂ J2 and tj,j′ ∈ {1, 2}. Then if we let J2,2 := J2 \ J2,1

and for each j ∈ J2,2 we let {vj,1, vj,2} be a basis for im Bj then the set of
cosets {vj,l + H2|j ∈ J2,2 and l = 1, 2} forms a basis for H1/H2 and qj = 1
for all j ∈ J2,2. We also note that the flag we get by adding the span of
the vectors from this basis one by one to the subspace H2 is a maximal flag
between H2 and H1 and we have equality in (13) for each step.

Now, if we have an equation in the set (15) with tj,j′ = 2 then we must
have qj = qj′ = 1 as neither can be greater than 1. Then we can insert a
space into the flag which splits the single equation into the two equations
and those equations are of the form we originally split off from the main
argument. We will deal with these equations in the next paragraph but one
and see that the index set of those should properly be considered as part of
J2,2.

When that rearrangement has been done we can thus get that all the
equations concerning qj with j ∈ J2,1 have the form 1 = qj + qj′ . Let us
define a relation on J2,1 such that j is related to j′ if there is an equation of
the form 1 = qj + qj′ with these j, j′. If we draw the graph of this relation
then each vertex j will have exactly two edges connected to it. Therefore we
can see that the graph will be a collection of disjoint circles. Let us examine
one of these circles. We can write all of the equations relating to the vertices
in this circle in the form

(16)

qj1 + qj2 = 1
qj2 + qj3 = 1

qjl−1
+ qjl

= 1
qj1 + qjl

= 1.

The number of equations in this list is the same as the number of variables.
However, if there is an even number of equations then the sum we get by
adding the even numbered equations is the same as the sum we get by
adding the odd numbered equations and so this system does not have a
unique solution, contrary to our assumptions. Therefore, the number of
equations in each circle is odd and in that case the system has a unique
solution, which clearly is qj = 1

2 for all j ∈ J2,1. We note that as the left
hand side of these equations is always 1, the flag they come from must be
maximal.
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Finally, let us look at the other case, where one of the equations in (13)
is of the form 1 = qj with j ∈ J2. Since the sum of the coefficients in front
of qj equals 2 there must be another equation with the term qj . Either,
it also takes the form 1 = qj or the form t = qj + Q where t > 1 is an
integer and Q stands for terms with qj′ , j′ ∈ J2 \ {j}. Let us first examine
the second case. Assume that it comes from (13) with Ukj

/Ukj−1 where
the codimension of Ukj−1 in Ukj

is t. Since the coefficient multiplying qj

is 1 we get that there are t − 1 independent vectors in the intersection of
ker Bj/Ukj−1 and Ukj

/Ukj−1. Let Ũ denote the vector sum of the span of
these and Ukj−1. By testing (3) on Ũ and subtracting (3) on Ukj−1 which
we know gives an equality we get that t − 1 ≤ Q′ where Q′ denotes the
contribution to this sum from terms qj′ , j′ ∈ J2 \ {j}. Now we get the chain
of inequalities

t = 1 + (t− 1) ≤ qj + Q′ ≤ qj + Q = t

and so we must have equality all the way and in particular this shows that we
may add Ũ to the flag which gives equalities and assume that both equalities
involving qj take the form 1 = qj .

For the purpose of determining the vector (qj) uniquely these two identical
equations do the same as the single equation 2 = 2qj . We can therefore
merge them and remove one space Uk from the flag U . This shows that we
may assume that the only equation involving this qj has the form 2 = 2qj

and this we had already analysed above.
All in all we have proved the following.

Theorem 13 (Mixed rank 1 and 2). Let Bj for j ∈ J1 be rank 1 linear trans-
formations from H and let Bj for j ∈ J2 be rank 2 linear transformations.
Then (qj) is a vertex of S if and only if the following holds

(1) qj = 1 for all j ∈ J1;
(2) the set J2 can be divided into two sets J2,1 and J2,2 such that

• qj = 1
2 for all j ∈ J2,1 and

• qj = 1 for all j ∈ J2,2 and
(3) the indices in J2,1 can be split into classes such that the equations

for each class take the form (16) and the number of indices in each
class is odd.

(4) There exists a maximal flag U1 $ · · · $ Un in H and numbers 0 ≤
s1 ≤ s2 ≤ n such that
• dim BjUs1 = 2 for all j ∈ J2,1 but Us1 ⊂ ker Bj for all j ∈ J2,2

and j ∈ J1; and
• dim BjUs2 = 2 for all j ∈ J2,2 but Us2 ⊂ ker Bj for all j ∈ J1.

Remark 14. From the proof of the theorem it is clear that we may rearrange
the flag so that the equations for qj with j ∈ J2,2 ∩ J1 come in any order.
However, this is not the case for Us1 . In fact there might be only one way
of choosing this maximal flag for Us1 . An example of such a configuration
is with dim H = 5 and Bj for j = 1, . . . , 5 are the rank two projections onto
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〈e1, e2 + e3〉, 〈e1, e4〉, 〈e2 + e1, e4 + e3〉, 〈e2, e5〉 and 〈e3, e5 + e4〉 respectively,
where {ei}i=1,...,5 is a orthonormal basis for H and the angled brackets de-
note the span of the relevant vectors. Then the only maximal flag for which
we have equality is

〈e5〉 ⊂ 〈e4, e5〉 ⊂ 〈e3, e4, e5〉 ⊂ 〈e2, e3, e4, e5〉 ⊂ 〈e1, e2, e3, e4, e5〉.

Remark 15. In the cases we have looked at, all of the vertices have had
associated with them flags of maximal length. However, this is not the
case in general as can be seen from the following example. We take H of
dimension 8 with an orthonormal basis (ei)i=1,...,8. For j = 1, . . . 4 we take
Bj to be the orthogonal projections onto the spaces 〈e1, e2, e5〉, 〈e2, e4, e7〉,
〈e1 + e2, e6, e8〉 and 〈e3 + e4, e5 + e6, e7 + e8〉 respectively. Then we have the
flag

〈e1, e2〉 ⊂ 〈e1, e2, e3, e4〉 ⊂ 〈e1, e2, e3, e4, e5, e6〉 ⊂ 〈e1, e2, e3, e4, e5, e6, e7, e8〉

for which (13) becomes

p1 + p2 + p3 = 2
p1 + p2 + p4 = 2
p1 + p3 + p4 = 2
p2 + p3 + p4 = 2

which has the solution p1 = p2 = p3 = p4 = 2
3 . It is straightforward to

confirm that the inequality (3) is satisfied for any subspace V of H as from
Lemma 11 we know that we need only to check it for subspaces which can
be placed into the flag. However, no linear combination of the pj with non-
negative integer coefficients can equal 1 so there can be no one-dimensional
subspace of H which has equality in (3).

Remark 16. If all the maps Bj have rank k then (4) gives that

(17)
∑

j

pj = n/k

and we can rewrite (3) as

dim V ≤
∑

j

pj dim(BjV ) =
∑

j

pj(dim V − dim(kerBj ∩ V ))

which says

(18)
∑

j

pj dim(kerBj ∩ V ) ≤ n− k

k
dim V.

We can carry out the analysis of this section with the conditions (5), (17)
and (18) and in particular we can recover a theorem similar to Theorem 13
for the case when all Bj have rank n− 2.
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3. The facets of S

We begin this section with a proof of Theorem 8.

Proof. The necessity of the conditions follows immediately from [4] as they
are a subset of the necessary conditions established there.

To show that the conditions are sufficient we use induction on n+m, where
n = dim H and m is the degree of multilinearity of the form. For the base
case we consider m = 1. Then testing (3) on kerB1 gives that dim kerB1 = 0
so B1 is surjective and then the scaling condition gives dim H1 = dim H and
p1 = 1. We see then the inequality evidently holds with equality if we take
C(B1, p1) = (det B1)−1.

For the inductive step we take a datum ((Bj), (pj)) and assume that the
result holds for each datum for which the quantity m + n is smaller.

As before, the conditions (4), (5) along with (3) for V ∈ L(Bj) define a
bounded convex polyhedron in Rm and by multilinear interpolation, to show
that the result holds everywhere in this polyhedron is is enough to establish
it at each vertex of it. As we have already dealt with the case m = 1 we
may assume m > 2 and then we get that, at a vertex, more than one of the
linear inequalities defining the polyhedron must be satisfied with equality.

There are now two cases. Either we have pj0 = 0 for some j0 or there is
a space U ∈ L(Bj) \ {{0},H} such that

(19) dim U =
∑

j

pj dim(BjU).

In the first case we see that we may write the Brascamp–Lieb inequality
without referring to j0 and the result thus follows from the induction hy-
pothesis since the degree of multilinearity has been reduced.

In the second case we can factor the Brascamp–Lieb form in the following
way: Define

B̃j : U → BjU : x 7→ Bjx

˜̃Bj : U⊥ → (BjU)⊥ : x 7→ Π(BjU)⊥Bjx

Γj : U⊥ → BjU : x 7→ ΠBjUBjx
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where Π(BjU)⊥ and ΠBjU denote the orthogonal projections onto the relevant
spaces. Then we can calculate∫

H

m∏
j=1

f
pj

j (Bjx) dx =
∫

U⊥

∫
U

m∏
j=1

f
pj

j (B̃j x̃ + Bj
˜̃x) dx̃d˜̃x

≤ C((B̃j), (pj))
∫

U⊥

m∏
j=1

(∫
BjU

fj(ỹ + Bj
˜̃x) dỹ

)pj

d˜̃x

= C((B̃j), (pj))
∫

U⊥

m∏
j=1

(∫
BjU

fj(ỹ + Γj
˜̃x + ˜̃Bj

˜̃x) dỹ

)pj

d˜̃x

= C((B̃j), (pj))
∫

U⊥

m∏
j=1

(∫
BjU

fj(ỹ + ˜̃Bj
˜̃x) dỹ

)pj

d˜̃x

≤ C((B̃j), (pj))C(( ˜̃Bj), (pj))
m∏

j=1

(∫
BjU⊥

∫
BjU

fj(ỹ + ˜̃y) dỹ d˜̃y

)pj

= C((B̃j), (pj))C(( ˜̃Bj), (pj))
m∏

j=1

(∫
Hj

fj(y) dy

)pj

.

Here we have used for the first inequality that for almost any ˜̃x ∈ U⊥ the
tuple (fj(·+ Bj

˜̃x)) consists of non-negative integrable functions defined on
BjU and we can therefore use the Brascamp–Lieb inequality for the datum

((B̃j), (pj)). For the next equality we use the definitions of Γj and ˜̃Bj and
for the one below that we use the translation invariance of the inner integral
and the fact that Γj

˜̃x ∈ BjU for any ˜̃x ∈ U⊥. For the second inequality we
use the fact that for any j the inner integral defines a non-negative function
of ˜̃Bj

˜̃x with domain (BjU)⊥ and we can therefore use the Brascamp–Lieb

inequality for the datum (( ˜̃Bj), (pj)).
Since we can perform this calculation for any tuple of non-negative inte-

grable functions (fj) defined on Hj , we have established the inequality

(20) C((Bj), (pj)) ≤ C((B̃j), (pj))C(( ˜̃Bj), (pj)).

In particular this shows that if both C((B̃j), (pj)) and C(( ˜̃Bj), (pj)) are
finite then C((Bj), (pj)) is finite. Since dim U < dim H and dim U⊥ <
H we may use the induction hypothesis to establish that this is the case.
The positivity condition (5) clearly holds since the tuple (pj) is inherited
unchanged from the original datum. The scaling condition (4) for B̃ holds
by the assumption that U is critical and by subtracting that condition from
the scaling condition for H we see that (4) holds for ˜̃Bj .



THE BRASCAMP–LIEB POLYHEDRON 15

So the only conditions that remain to be checked are (3) for any space in
L(B̃j)

and L
( ˜̃Bj)

. First of all, we note that the first of these sets is a subset
of L(Bj). To see this we note that it is enough to show that the building
blocks of L(B̃j)

, the sets ker B̃j , lie in L(Bj). Since B̃j = Bj |U we get that

ker B̃j = kerBj ∩ U and the inclusion follows as both the sets on the right
hand side are elements of L(Bj). Now, for any W ∈ L(B̃j)

we have that

W ⊂ U and therefore dim B̃jW = dim BjW . Therefore, the inequality

dim W ≤
∑

j

pj dim B̃jW

is in the list in inequalities coming from L(Bj).

Secondly, we study L
( ˜̃Bj)

. Let us take an element ˜̃W from this set. Our
aim is to establish that the inequality

dim ˜̃W ≤
∑

j

pj dim ˜̃Bj
˜̃W

is in the list from L(Bj). Since U is critical and the elements in the pairs

U , W and BjU , ˜̃Bj
˜̃W are orthogonal to each other we see that we may

equivalently establish the inequality

(21) dim( ˜̃W + U) ≤
∑

j

pj dim( ˜̃Bj
˜̃W + BjU).

We note that the sets ˜̃Bj
˜̃W +BjU and Bj(

˜̃W +U) are the same. To see this
take an element x from the former set. Then x has the form Π(BjU)⊥Bjy +

Bjz with y ∈ ˜̃W and z ∈ U . Now there is an element y′ ∈ U such that

Π(BjU)⊥Bjy = Bjy + Bjy
′. Then x = Bj(y + (y′ + z)) with y ∈ ˜̃W and

y′ + z ∈ U . For the other direction we take x ∈ Bj(
˜̃W + U). Then we can

write x = Bj(y + z) with y ∈ ˜̃W and z ∈ U . We take y′ as before and then

x = ˜̃Bjy + Bj(z − y′) with y ∈ ˜̃W and z − y′ ∈ U .

Therefore, it is enough to show that ˜̃W + U ∈ L(Bj). To establish this we

note first of all that if ˜̃W = ker ˜̃Bj then ˜̃W + U = ker Bj + U . To see this

take x ∈ ˜̃W . This means by definition that Bjx ∈ BjU so x ∈ ker Bj + U .
On the other hand, if we take x ∈ ker Bj and write x = y+z with y ∈ U and

z ∈ U⊥ then Bjz = Bjx−Bjy = −Bjy ∈ BjU so ˜̃Bjz = 0 so z ∈ ker ˜̃Bj . We

also note that for any ˜̃W1,
˜̃W2 ∈ L

( ˜̃Bj)
we have that ( ˜̃W1 + U)∩ ( ˜̃W2 + U) =

( ˜̃W1 ∩ ˜̃W2) + U and ( ˜̃W1 + U) + ( ˜̃W2 + U) = ( ˜̃W1 + ˜̃W2) + U . The first of
those follows from the fact that both ˜̃W1 and ˜̃W2 lie in U⊥ and the second
is self-evident. Is is now clear that by using induction on the number of
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operations needed to get to ˜̃W that we can show that ˜̃W + U ∈ L(Bj) and
we thus complete the proof of the theorem. �

By examining the above proof we can give a procedure which tells us
when we have found all the conditions included in (3).

We start by looking for necessary conditions by going through an enu-
meration of the elements of L(Bj) and we decide (arbitrarily) to pause when
we have found the necessary conditions (3) for V ∈ V where V ⊂ L(Bj). At
this stage we wish to determine whether we have found all the necessary
conditions for the Brascamp–Lieb inequality to hold. The conditions (3) for
V ∈ V, together with the conditions (4) and (5) restrict the set of tuples (pj)
for which the Brascamp–Lieb inequality holds to a polyhedron S̃(Bj) and we
wish to determine whether S̃(Bj) = S(Bj) where S(Bj) is the Brascamp–Lieb
polyhedron for (Bj). This will be the case if and only if each vertex of S̃(Bj)

is in S(Bj). There exists an algorithm which lists all of the vertices of S̃(Bj).
For each vertex (qj) in this list we know that m of the conditions (3) for
V ∈ V, (4) and (5) are satisfied with equality. If none of these equalities
comes from (3) then the support of (qj) can only contain one element qj0 and
we know from above that the Brascamp–Lieb inequality holds at this vertex
if and only if qj0 = 1 and ker Bj0 = {0}. Otherwise there is a space U ∈ V
which lies strictly between {0} and H such that (3) holds with equality for
U . By the proof above we see that the Brascamp–Lieb inequality holds at
(qj) if and only if it holds for the data ((B̃j), (qj)) and (( ˜̃Bj), (qj)), that is
if (qj) ∈ S(B̃j)

and (qj) ∈ S
( ˜̃Bj)

.
To determine whether this is the case we run through the above algorithm

for both S(B̃j)
and S

( ˜̃Sj)
. This recursion can only have n levels of depth

and will therefore be completed in a finite number of steps and when it is
completed we know whether (qj) is in S(Bj) in which case we move on to the
next vertex, or whether (qj) is not in S(Bj) in which case we break the pause
and continue looking for necessary conditions in the list of L(Bj) until we
decide again (arbitrarily) to pause and check whether we have now found
all of the necessary conditions.
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