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2 1. Introdu
tionVariational models for separating an image into a 
artoon 
omponent and a noise or texture
omponent have been widely studied. The best known of these is the Rudin�Osher�Fatemi modelwhi
h for a given image f ∈ L2 asks for the minimizer of
EROF,K(u) = ‖u‖BV + λ‖f − u‖2

2.Here u will be the 
artoon 
omponent, f −u the noise or texture and λ > 0 is a 
ontrol parameter.Also note that ‖u‖BV denotes the BV bounded variational norm of u, see e.g. [1℄.Sin
e the fun
tional EROF,K is stri
tly 
onvex in u this model has unique minimizers. However,it is not without its problems. One problem is that even though we start with an f whi
h wewould like to think has no noise or texture, su
h as the 
hara
teristi
 fun
tion of a unit diskin R
2 we get that the optimal solution u∗ does not satisfy u∗ = f . To alleviate this we might
onsider repla
ing the L2 norm with an L1 norm. In this 
ase, provided the 
ontrol parameter islarge enough, the 
hara
teristi
 fun
tion of the disk is its own optimizer. On the other hand wehave sa
ri�
ed uniqueness, in parti
ular there exists a radius R su
h that if we take f to be the
hara
teristi
 fun
tion of a disk of radius R then both f and the zero fun
tion are optimizers.For a further dis
ussion of these and other related models see [3℄ and referen
es therein.In response to a question of John B. Garnett [2℄ we will in this note study the model whi
hseeks to minimize

EK(u) = EK(u, f) = ‖u‖BV + λ‖K ∗ (f − u)‖1where K is a positive, even and real analyti
 kernel with ∫∞

−∞
Kdx = 1. Eventually we will �x Kto be K(x) =

√
δe−δπx2 . Furthermore we will 
onsider a periodi
 variant of this model where fand u are periodi
 of period 1 and these norms are to be 
al
ulated over an interval of length 1.The fun
tional we wish to minimize is 
onvex in u but not stri
tly 
onvex. Therefore theminimizer need not be unique and indeed our main result is that the minimizer is not ne
essarilyunique. 2. Main argumentLet f be periodi
 with period 1 and su
h that

f =

{

−1 − 1
2 < x ≤ 0

1 0 < x ≤ 1
2 .When the kernel K is applied to a periodi
 fun
tion f we 
an 
al
ulate

K ∗ f(x) =

∫

∞

−∞

K(x − y)f(y)dy =

∞
∑

n=−∞

∫ p+(n+1)

p+n

K(x − y)f(y)dy

=

∫ p+1

p

∞
∑

n=−∞

K((x − y) − n)f(y)dy =

∫ p+1

p

K̃(x − y)f(y)dy.Here K̃(x) =
∑

n K(x − n) is periodi
 and p is any real number so that the integration is overone period. We also require that K̃ is a de
reasing fun
tion of x in the interval x ∈ [1, 1/2]. (Weshould 
hoose K to ensure this.)Let fr(x) = −f(−x) be the rotation of (the graph of) f about the origin by π and similarly
ur for u. It is 
lear from the de�nition of f that fr ≡ f and it is also 
lear from the de�nitionof the E-fun
tion that EK(u, f) = EK(ur, fr). Hen
e, if u is a minimizer for EK(·, f) for some�xed value of λ then ur is also a minimizer for EK(·, f). Sin
e EK(u) is 
onvex as a fun
tional of
u then v = (u + ur)/2 is also a minimizer and v is an odd fun
tion. In what follows we will onlylook for these odd minimizers.Note that

‖u‖BV ≥ 2( max
x∈[0,1]

u(x) − min
x∈[0,1]

u(x)).This is the only estimate we need on the BV norm and it holds in general due to the de�nitionof the norm. Sin
e (we are assuming) u is odd we see that if a = maxx∈[0,1] u(x) then −a =



3
minx∈[0,1] u(x). Also a ≤ 1 as we note that ‖f‖BV = 4 and if a > 1 then ‖u‖BV ≥ 4 and f itselfperfoms better than u so u is not a minimizer.We will now manipulate the expression of the fun
tional to suit our needs. In the following
al
ulations we integrate over the period [−1/2, 1/2].

EK(u) = ‖u‖BV + λ‖K ∗ (f − u)‖1

= ‖u‖BV + λ

∫ 1

2

−
1

2

∣

∣

∣

∣

∣

∫ 1

2

−
1

2

K̃(x − y)[f(y) − u(y)]dy

∣

∣

∣

∣

∣

dx

= ‖u‖BV + λ

(

∫ 0

−
1

2

+

∫ 1

2

0

)∣

∣

∣

∣

∣

∫ 1

2

−
1

2

K̃(x − y)[f(y) − u(y)]dy

∣

∣

∣

∣

∣

dx.We want to know how to manipulate the absolute value in the last integral. For 0 ≤ x ≤ 1
2 let uslook at

∫ 1

2

−
1

2

K̃(x − y)[f(y) − u(y)]dy

=

∫ 0

−
1

2

+

∫ 1

2

0

K̃(x − y)[f(y) − u(y)]dy

=

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

[f(y) − u(y)]dy.The last equality uses the fa
t that f and u are odd fun
tions. As f(x) ≥ u(x) for x ∈ [0, 1
2 ] we onlyneed to 
onsider the sign of the K̃-prefa
tor. We see that for x, y ∈ [0, 1

2 ] we have |x−y| ≤ |x+y|.We need to 
onsider two 
ases:(1) |x + y| ≤ 1
2 : Then both |x − y| and |x + y| lie in the interval [0, 1

2 ] and we have assumedthat K̃(ξ) < K̃(η) if |η| < |ξ| ≤ 1
2 . Thus K̃(x − y) − K̃(x + y) is positive.(2) 1

2 < |x + y| ≤ 1: We note that K̃(x + y) = K̃(1 − (x + y)) be
ause K̃ is even andperiodi
. Furthermore we have |x − y| ≤ 1
2 and |1 − (x + y)| ≤ 1

2 . Moreover, we see that
|x − y| ≤ |1 − (x + y)| sin
e x, y ≤ 1

2 . Thus K̃(x − y) − K̃(x + y) is again positive.Finally, 
onsidering the symmetry we get the same from the integral for x ∈ [− 1
2 , 0] as from theintegral for x ∈ [0, 1

2 ]. Thus
EK(u) = ‖u‖BV + 2λ

∫ 1

2

0

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

[f(y) − u(y)]dyFor 0 ≤ y ≤ 1
2 we have that f(y) = 1. For a = maxy∈[0, 1

2
] u(y) we let

v(y) =

{

−a − 1
2 < y ≤ 0

a 0 < y ≤ 1
2

.Then we see that for
EK(u) = ‖u‖BV + 2λ

∫ 1

2

0

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

[1 − u(y)]dy



4we have EK(v) ≤ EK(u) with equality only when u = v. Hen
e we 
on
lude that all oddminimizers of EK(u) are of the same form as v. Let us 
onsider u = v in the last equation.
EK(v) = ‖v‖BV + 2λ

∫ 1

2

0

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

[1 − v(y)]dy

= 4a + 2(1 − a)λ

∫ 1

2

0

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

dy

= 2 + a

(

4 − 2λ

∫ 1

2

0

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

dy

)

= 2 + a (4 − 2λ∆(K))where
∆(K) =

∫ 1

2

0

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

dy.is a number whi
h depends only on K.Let us then return to the 
ase of K(x) =
√

δe−δπx2 . Then ∆(K) = ∆(δ) depends only on theparameter δ. We look at two limits for δ:
• In the limit δ → 0 then K̃(x) = 1 and hen
e ∆(0) = 0.
• In the limit δ → ∞ then K̃(x) = δ0(x) where δ0 is the Dira
-delta fun
tion. Hen
e

∆(∞) = 1
2 .For 0 < δ < ∞ we get 0 < ∆(δ) < 1

2 . Then the value a for the optimal v in EK(v) is given by
a =











0, λ < 2
∆

1, λ > 2
∆any value between 0 and 1, λ = 2
∆That is for λ < 2

∆ the 
onstant fun
tion zero is a minimizer, and when λ > 2
∆ the fun
tion f isits own minimizer. However when λ = 2

∆ the minimizer is not unique.From this we have found the 
ondition that is needed for f to be its own minimizer. We alsosee that neither u nor ‖u‖BV needs to be unique.Referen
es[1℄ Lawren
e C. Evans and Ronald F. Gariepy. Measure theory and �ne properties of fun
tions. Studies in Advan
edMathemati
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ommuni
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