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2 1. IntrodutionVariational models for separating an image into a artoon omponent and a noise or textureomponent have been widely studied. The best known of these is the Rudin�Osher�Fatemi modelwhih for a given image f ∈ L2 asks for the minimizer of
EROF,K(u) = ‖u‖BV + λ‖f − u‖2

2.Here u will be the artoon omponent, f −u the noise or texture and λ > 0 is a ontrol parameter.Also note that ‖u‖BV denotes the BV bounded variational norm of u, see e.g. [1℄.Sine the funtional EROF,K is stritly onvex in u this model has unique minimizers. However,it is not without its problems. One problem is that even though we start with an f whih wewould like to think has no noise or texture, suh as the harateristi funtion of a unit diskin R
2 we get that the optimal solution u∗ does not satisfy u∗ = f . To alleviate this we mightonsider replaing the L2 norm with an L1 norm. In this ase, provided the ontrol parameter islarge enough, the harateristi funtion of the disk is its own optimizer. On the other hand wehave sari�ed uniqueness, in partiular there exists a radius R suh that if we take f to be theharateristi funtion of a disk of radius R then both f and the zero funtion are optimizers.For a further disussion of these and other related models see [3℄ and referenes therein.In response to a question of John B. Garnett [2℄ we will in this note study the model whihseeks to minimize

EK(u) = EK(u, f) = ‖u‖BV + λ‖K ∗ (f − u)‖1where K is a positive, even and real analyti kernel with ∫∞

−∞
Kdx = 1. Eventually we will �x Kto be K(x) =

√
δe−δπx2 . Furthermore we will onsider a periodi variant of this model where fand u are periodi of period 1 and these norms are to be alulated over an interval of length 1.The funtional we wish to minimize is onvex in u but not stritly onvex. Therefore theminimizer need not be unique and indeed our main result is that the minimizer is not neessarilyunique. 2. Main argumentLet f be periodi with period 1 and suh that

f =

{

−1 − 1
2 < x ≤ 0

1 0 < x ≤ 1
2 .When the kernel K is applied to a periodi funtion f we an alulate

K ∗ f(x) =

∫

∞

−∞

K(x − y)f(y)dy =

∞
∑

n=−∞

∫ p+(n+1)

p+n

K(x − y)f(y)dy

=

∫ p+1

p

∞
∑

n=−∞

K((x − y) − n)f(y)dy =

∫ p+1

p

K̃(x − y)f(y)dy.Here K̃(x) =
∑

n K(x − n) is periodi and p is any real number so that the integration is overone period. We also require that K̃ is a dereasing funtion of x in the interval x ∈ [1, 1/2]. (Weshould hoose K to ensure this.)Let fr(x) = −f(−x) be the rotation of (the graph of) f about the origin by π and similarly
ur for u. It is lear from the de�nition of f that fr ≡ f and it is also lear from the de�nitionof the E-funtion that EK(u, f) = EK(ur, fr). Hene, if u is a minimizer for EK(·, f) for some�xed value of λ then ur is also a minimizer for EK(·, f). Sine EK(u) is onvex as a funtional of
u then v = (u + ur)/2 is also a minimizer and v is an odd funtion. In what follows we will onlylook for these odd minimizers.Note that

‖u‖BV ≥ 2( max
x∈[0,1]

u(x) − min
x∈[0,1]

u(x)).This is the only estimate we need on the BV norm and it holds in general due to the de�nitionof the norm. Sine (we are assuming) u is odd we see that if a = maxx∈[0,1] u(x) then −a =



3
minx∈[0,1] u(x). Also a ≤ 1 as we note that ‖f‖BV = 4 and if a > 1 then ‖u‖BV ≥ 4 and f itselfperfoms better than u so u is not a minimizer.We will now manipulate the expression of the funtional to suit our needs. In the followingalulations we integrate over the period [−1/2, 1/2].

EK(u) = ‖u‖BV + λ‖K ∗ (f − u)‖1

= ‖u‖BV + λ

∫ 1

2

−
1

2

∣

∣

∣

∣

∣

∫ 1

2

−
1

2

K̃(x − y)[f(y) − u(y)]dy

∣

∣

∣

∣

∣

dx

= ‖u‖BV + λ

(

∫ 0

−
1

2

+

∫ 1

2

0

)∣

∣

∣

∣

∣

∫ 1

2

−
1

2

K̃(x − y)[f(y) − u(y)]dy

∣

∣

∣

∣

∣

dx.We want to know how to manipulate the absolute value in the last integral. For 0 ≤ x ≤ 1
2 let uslook at

∫ 1

2

−
1

2

K̃(x − y)[f(y) − u(y)]dy

=

∫ 0

−
1

2

+

∫ 1

2

0

K̃(x − y)[f(y) − u(y)]dy

=

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

[f(y) − u(y)]dy.The last equality uses the fat that f and u are odd funtions. As f(x) ≥ u(x) for x ∈ [0, 1
2 ] we onlyneed to onsider the sign of the K̃-prefator. We see that for x, y ∈ [0, 1

2 ] we have |x−y| ≤ |x+y|.We need to onsider two ases:(1) |x + y| ≤ 1
2 : Then both |x − y| and |x + y| lie in the interval [0, 1

2 ] and we have assumedthat K̃(ξ) < K̃(η) if |η| < |ξ| ≤ 1
2 . Thus K̃(x − y) − K̃(x + y) is positive.(2) 1

2 < |x + y| ≤ 1: We note that K̃(x + y) = K̃(1 − (x + y)) beause K̃ is even andperiodi. Furthermore we have |x − y| ≤ 1
2 and |1 − (x + y)| ≤ 1

2 . Moreover, we see that
|x − y| ≤ |1 − (x + y)| sine x, y ≤ 1

2 . Thus K̃(x − y) − K̃(x + y) is again positive.Finally, onsidering the symmetry we get the same from the integral for x ∈ [− 1
2 , 0] as from theintegral for x ∈ [0, 1

2 ]. Thus
EK(u) = ‖u‖BV + 2λ

∫ 1

2

0

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

[f(y) − u(y)]dyFor 0 ≤ y ≤ 1
2 we have that f(y) = 1. For a = maxy∈[0, 1

2
] u(y) we let

v(y) =

{

−a − 1
2 < y ≤ 0

a 0 < y ≤ 1
2

.Then we see that for
EK(u) = ‖u‖BV + 2λ

∫ 1

2

0

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

[1 − u(y)]dy



4we have EK(v) ≤ EK(u) with equality only when u = v. Hene we onlude that all oddminimizers of EK(u) are of the same form as v. Let us onsider u = v in the last equation.
EK(v) = ‖v‖BV + 2λ

∫ 1

2

0

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

[1 − v(y)]dy

= 4a + 2(1 − a)λ

∫ 1

2

0

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

dy

= 2 + a

(

4 − 2λ

∫ 1

2

0

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

dy

)

= 2 + a (4 − 2λ∆(K))where
∆(K) =

∫ 1

2

0

∫ 1

2

0

(

K̃(x − y) − K̃(x + y)
)

dy.is a number whih depends only on K.Let us then return to the ase of K(x) =
√

δe−δπx2 . Then ∆(K) = ∆(δ) depends only on theparameter δ. We look at two limits for δ:
• In the limit δ → 0 then K̃(x) = 1 and hene ∆(0) = 0.
• In the limit δ → ∞ then K̃(x) = δ0(x) where δ0 is the Dira-delta funtion. Hene

∆(∞) = 1
2 .For 0 < δ < ∞ we get 0 < ∆(δ) < 1

2 . Then the value a for the optimal v in EK(v) is given by
a =











0, λ < 2
∆

1, λ > 2
∆any value between 0 and 1, λ = 2
∆That is for λ < 2

∆ the onstant funtion zero is a minimizer, and when λ > 2
∆ the funtion f isits own minimizer. However when λ = 2

∆ the minimizer is not unique.From this we have found the ondition that is needed for f to be its own minimizer. We alsosee that neither u nor ‖u‖BV needs to be unique.Referenes[1℄ Lawrene C. Evans and Ronald F. Gariepy. Measure theory and �ne properties of funtions. Studies in AdvanedMathematis. CRC Press, Boa Raton, FL, 1992.[2℄ John B. Garnett. Personal ommuniation, 2008.[3℄ Luminita A. Vese John B. Garnett, Triet M. Le. Some variational problems arising in image proessing. preprint,2010.Siene Institute, University of Ieland, Dunhaga 3, 107 Reykjavík, IelandE-mail address: eio�hi.isSiene Institute, University of Ieland, Dunhaga 3, 107 Reykjavík, IelandE-mail address: siv�hi.is


