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Abstract. We study a multilinear analogue of the Hilbert transform.
As can be expected, the finiteness of the form depends on cancellation
properties in the kernel and care must be taken in the definition of the
form. We show how to define the form in terms of distributions and
prove L

p bounds for that form.
In the second part, we study an analogous form on the level of frac-

tional integration. This has been studied in one form by Drury. We
note the L

p bounds for it and find the optimal constant for this bound
in the case with the most symmetries. We also determine all functions
which are optimisers for this inequality.

Finally, we consider analogues of the fractional integration form in
directions similar to those of Beckner’s approach for multilinear multi-
linear Hardy–Littlewood–Sobolev inequalities.

1. Introduction

1.1. Overview. The Hilbert transform and the fractional integration oper-
ator acting on functions on R can be viewed as convolution operators with
a kernel which involves calculating the volume of the simplex in R whose
vertices are two points, x1 and x2, that is, calculating the difference x2−x1.

One way of extending these operators to higher dimensions is to multi-
linearise them and consider n forms, defined for functions on R

n−1 whose
kernel involves calculating the volume of the simplex in R

n−1 whose vertices
are the n points, x1, . . . , xn, that is, calculating det

(
1 ... 1
x1 ... xn

)
.

In this article we will consider two such forms. The first lives on the level
of the Hilbert transform, so that the Lp–boundedness of the form relies on
cancellation properties of the kernel and care must be taken to properly
define the form. This form has not been considered before in the literature.

The second form lives on the level of fractional integration. Such a form
has been considered before by Christ [7], Drury [8] and Baernstein and
Loss [1] because of its relation to questions regarding the k-plane transform
and the restriction of the Fourier transform. In particular Drury proved
Lp–boundedness for the form or rather a closely related analogue of it for
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functions defined on the (n− 1)–sphere. For this form we address the ques-
tion of finding the best constant in the inequality which the gives the Lp–
boundedness of the form. Such questions have been answered for the frac-
tional integration operator by Carlen and Loss [6], see also the book of Lieb
and Loss [10], using symmetrisation and conformal invariance. We adapt
these techniques for the form we wish to consider.

Furthermore, Beckner [2] has considered multilinearising fractional inte-
gration in a different way, and we remark that it is possible in some sense
to combine these two methods of multilinearisation.

Finally, all of our techniques rely on some geometric invariance which
among other things makes it possible to formulate all of our results on
Euclidean space, spherical space or hyperbolic space.

Parts of this work were done as a part of my PhD research at the Uni-
versity of Edinburgh. I would like to thank my supervisor Tony Carbery for
his advice and encouragement. I would also like to thank Almut Burchard
for useful discussions.

We now turn to the statement of our results.

1.2. The singular integral. The object we wish to study is the n-linear
form given formally by

(1) Λ(f1, . . . , fn) :=

∫

(Rn−1)n

f1(x1) · · · fn(xn)

det
(

1 1 ... 1
x1 x2 ... xn

) dx1 dx2 . . . dxn

where xi ∈ R
n−1. In the determinant we interpret the variables xi as column

vectors, adjoin a top row containing only 1 and thus get a square matrix.
For n = 2 we have

Λ(f, g) =

∫

R

∫

R

f(x)g(y)

det
(

1 1
x y

) dxdy =

∫

R

∫

R

f(x)g(y)

y − x
dxdy = π〈Hf, g〉

where Hf denotes the Hilbert transform of f so in this case Λ is the bilinear
form associated to the Hilbert transform. For n ≥ 3 we can see Λ as an
n-linear generalisation of the Hilbert transform.

There is a closely related form defined for n functions on the unit sphere
Sn−1 given by

(2) ΛS(f1, . . . , fn) :=

∫

(Sn−1)n

f1(ω1) · · · fn(ωn)

det(ω1, . . . , ωn)
dω1 dω2 . . . dωn.

The integrals (1) and (2) are not absolutely convergent so we replace them
with
(3)

Λ(f1, . . . , fn) :=
1

2

∫
(f1(x1) − f1(x

∗
1))f2(x2) · · · fn(xn)

det
(

1 1 ... 1
x1 x2 ... xn

) dx1 dx2 . . . dxn
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where x∗1 is the reflection of x1 in the hyperplane determined by the other
variables and
(4)

ΛS(f1, . . . , fn) :=
1

2

∫
(f1(ω1) − f1(ω

∗
1))f2(ω2) · · · fn(ωn)

det(ω1, . . . , ωn)
dω1 dω2 . . . dωn

where ω∗
1 is the reflection of ω1 in the great hypercircle determined by the

other variables.
As a purely formal exercise we can calculate

Λ(f1, . . . , fn) =
1

2

∫
(f1(x1) − f1(x

∗
1))f2(x2) · · · fn(xn)

det
(

1 1 ... 1
x1 x2 ... xn

) dx1 dx2 . . . dxn

=
1

2

∫
f1(x1)f2(x2) · · · fn(xn)

det
(

1 1 ... 1
x1 x2 ... xn

) dx1 dx2 . . . dxn

− 1

2

∫
f1(x

∗
1)f2(x2) · · · fn(xn)

det
(

1 1 ... 1
x1 x2 ... xn

) dx1 dx2 . . . dxn

=

∫
f1(x1)f2(x2) · · · fn(xn)

det
(

1 1 ... 1
x1 x2 ... xn

) dx1 dx2 . . . dxn

since the change of variables x1 7→ x∗1 has Jacobian 1, x∗∗1 = x1 and

det

(
1 1 . . . 1
x1 x2 . . . xn

)
= − det

(
1 1 . . . 1
x∗1 x2 . . . xn

)

which follows by noting that the determinants are the signed volumes of the
simplices whose vertices are x1, . . . , xn and x∗1, x2, . . . , xn respectively and
these simplices have the same unsigned volume but different orientations.

The following lemma establishes that (3) and (4) are sensible definitions.

Lemma 1. Let f1, . . . , fn be functions in C∞
c (Rn−1) or C∞(Sn−1). Then

(1) the integrals in (3) or (4) are absolutely convergent,

(2) the numerator (f1(x1) − f1(x
∗
1))f2(x2) · · · fn(xn) in (3) can be re-

placed by

f1(x1) · · · fi−1(xi−1)(fi(xi) − fi(x
∗
i ))fi+1(xi+1) · · · fn(xn)

for any i = 1, . . . , n without affecting the value of the integral and

(3) the numerator (f1(ω1) − f1(ω
∗
1))f2(ω2) · · · fn(ωn) in (4) can be re-

placed by

f1(ω1) · · · fi−1(ωi−1)(fi(ωi) − fi(ω
∗
i ))fi+1(ωi+1) · · · fn(ωn)

for any i = 1, . . . , n without affecting the value of the integral.

The symbols x∗i and ω∗
i have the obvious meaning analogous to x∗1 and

ω∗
1.
What we are interested in are estimates of the form

(5) |Λ(f1, . . . , fn)| . ‖f1‖Lp1 (Rn−1) · · · ‖fn‖Lpn (Rn−1)
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and

(6) |ΛS(f1, . . . , fn)| . ‖f1‖Lp1 (Sn−1) · · · ‖fn‖Lpn (Sn−1)

where A . B signifies that there is an absolute constant C, depending only
on the dimension, such that A ≤ CB. We shall prove the following theorems.

Theorem 2. Let S be the closed polytope in R
n whose vertices are the n

permutations of the n-tuple (n−2
n−1 , . . . ,

n−2
n−1 , 1). Then (5) holds if and only if

( 1
p1
, . . . , 1

pn
) lies in the interior of S, relative to the hyperplane that S lies

in. For n ≥ 3, the estimate holds on the boundary of S if each fj with j for

which 1
pj

= n−2
n−1 is restricted to be a characteristic function of a set but the

other fj’s may be unrestricted. The estimate fails if any fj with j for which
1
pj

= n−2
n−1 is taken unrestricted.

Remark 3. Each point (qj) in S lies in the hyperplane Π defined by the
equation

n∑

j=1

qj = n− 1.

When we speak about the exterior, the interior and the boundary of S we
understand it to be taken relative to Π.

To state our result concerning (6) consider the set of points (z1, . . . , zn) ∈
R

n such that zi ≥ 0,
∑n

i=1 zi ≤ n−1 and
∑k

j=1 zij <
(n−2)k+1

n−1 for any subset

A = {i1, . . . , ik} of {1, . . . , n}. Call this set S̃.

Theorem 4. Inequality (6) holds if ( 1
p1
, . . . , 1

pn
) lies in S̃. It fails if ( 1

p1
, . . . , 1

pn
)

lies in the exterior of S̃. For n ≥ 3, the estimate holds at a vertex of S if

each fj is restricted to be a characteristic function of a set but it fails if the

fj’s are unrestricted.

By specialising these theorems to the centre of S we get:

Corollary 5.

(7) |Λ(f1, . . . , fn)| .

n∏

i=1

‖fi‖L
n

n−1 (Rn−1)
.

Corollary 6.

(8) |ΛS(f1, . . . , fn)| .

n∏

i=1

‖fi‖L
n

n−1 (Sn−1)
.

To make the geometric picture complete, we note that the integrals (1)
on Euclidean space and (2) on the sphere have a close relative on hyperbolic
space. To formulate that, following Beckner [2], we let H

n−1 denote the
two-sheeted hyperboloid in R

n given by

H
n−1 = {Q = (q0, q̄) ∈ R × R

n−1 : q20 − |q̄| = 1}.
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This set has a measure, dν, which invariant under actions of the Lorenz
group O(1, n − 1) and this set-up is a model for hyperbolic space.

We consider the form

(9) ΛH(f1, . . . , fn) :=

∫

(Hn−1)n

f1(q1) · · · fn(qn)

det(q1, . . . , qn)
dν(q1) · · · dν(qn).

Note that when calculating the determinant, each qi is viewed as a column
vector in R

n. This is a singular integral but a suitable variant of Lemma 1
holds so that the definition is sensible. We are interested in estimates of the
form

(10) |ΛH(f1, . . . , fn)| . ‖f1‖Lp1 ( dν) · · · ‖fn‖Lpn ( dν).

We prove:

Theorem 7. An identical statement to the one in Theorem 4 holds for

inequality (10).

1.3. Best constants and optimisers. In Section 3 we look at fractional
integral analogues of the multilinear forms above. Define for 0 < α < 1

(11) Λα(f1, . . . , fn) :=

∫
f1(x1) · · · fn(xn)∣∣det
(

1 1 ... 1
x1 x2 ... xn

)∣∣α dx1 dx2 . . . dxn

where xi ∈ R
n−1. Also define

(12) ΛS,α(f1, . . . , fn) :=

∫
f1(ω1) · · · fn(ωn)

|det(ω1, . . . , ωn)|α dω1 dω2 . . . dωn

where ωi ∈ Sn−1. Finally, define

(13) ΛH,α(f1, . . . , fn) :=

∫

(Hn−1)n

f1(q1) · · · fn(qn)

|det(q1, . . . , qn)|α dν(q1) · · · dν(qn).

As in the Hardy–Littlewood–Sobolev theorem concerning fractional inte-
grals, the boundedness of these multilinear forms does not rely on cancella-
tion properties of the kernel. Indeed, we have that

(14) |Λα(f1, . . . , fn)| . ‖f1‖p0,α
. . . ‖fn−1‖p0,α

‖fn‖1;

(15) |ΛS,α(f1, . . . , fn)| . ‖f1‖p0,α
. . . ‖fn−1‖p0,α

‖fn‖1

and

(16) |ΛH,α(f1, . . . , fn)| . ‖f1‖p0,α
. . . ‖fn−1‖p0,α

‖fn‖1

where 1/p0,α = 1 − α/(n − 1). As before, interpolation gives that

(17) |Λα(f1, . . . , fn)| . ‖f1‖pα . . . ‖fn‖pα ;

(18) |ΛS,α(f1, . . . , fn)| . ‖f1‖pα . . . ‖fn‖pα

and

(19) |ΛH,α(f1, . . . , fn)| . ‖f1‖pα . . . ‖fn‖pα
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where 1/pα = 1−α/n. These results can be proved with the same methods
we used for the singular integral version and in fact this has already been
done for ΛS,α by Drury [8]. Because of the absolute convergence there is no
question about how the forms are defined and this makes the proof slightly
simpler.

There is an implied constant on the right hand side of inequalities (17),
(18) and (19). We will give a minimum value for these constants and identify
the functions that give equality with them.

To state the theorem, let us define

H(f1, . . . , fn) :=
|Λα(f1, . . . , fn)|
‖f1‖p . . . ‖fn‖p

where for the rest of this section we have fixed p as pα. Also define

(20) k(x) =
1

(1 + |x|2)
n
2p

We prove the following.

Theorem 8. The n-tuple (k, . . . , k) is an optimiser for the operator Λα in

the sense that

sup
fi≥0

H(f1, . . . , fn) = H(k, . . . , k).

Furthermore, if the tuple (f1, . . . , fn) of non-negative functions is an opti-

miser for Λα then there exists an n × n matrix A with determinant 1 and

ci ≥ 0 for 1 ≤ i ≤ n such that

(21) fi(x) = ci‖A ( x
1 ) ‖−

n
p for each 1 ≤ i ≤ n

and conversely, all tuples of functions of this form are optimisers.

The analogous theorems for ΛS,α and ΛH,α are stated and proved at the
end of Section 3.

1.4. Relations to the results of Beckner. In [2], Beckner considers mul-
tilinear analogues of the Hardy–Littlewood–Sobolev inequality which take
the form

∫ N∏

k=1

fk(xk)
∏

1≤i<j≤N

|xi − xj |−γij dx1 · · · dxN ≤ C
N∏

k=1

‖fk‖pk

for non-negative valued functions on R
n. For certain ranges of the param-

eters γij and pk this inequality possesses a conformal invariance and he
shows how it is possible to write down equivalent inequalities for the (Rie-
mann) sphere Sn and for hyperbolic space H

n. Furthermore, by playing
this invariance against symmetrisation techniques as Carlen and Loss did
for the original Hardy–Littlewood–Sobolev inequality Beckner gives the op-
timal value of the constant C and also all the functions which furnish it.
This idea is also a theme in our work but we would like to note that in the
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work of Beckner and Carlen and Loss the mappings between the underlying
spaces are conformal whereas in ours they are not.

Furthermore, it is possible to extend our results in the spirit of Beckner
to multilinear forms of the type

(22) Iγ(f1, . . . , fN ) =

∫ N∏

k=1

fk(xk)
∏

P∈P

V (xi|i ∈ P )−γP dx1 · · · dxN

with xi ∈ R
n−1 for i = 1, . . . , N and each P in the collection P is a set of n

indices from {1, . . . , N} so that {xi|i ∈ P} is the vertex set of a simplex in
R

n−1 whose (unsigned) volume is denoted V (xi|i ∈ P ). In this case we are
interested in inequalities of the form

(23) Iγ(f1, . . . , fN ) ≤ C

N∏

k=1

‖fk‖pk
.

The condition
n

pk
+
∑

k∈P

γP = n

must hold for k = 1, . . . , N in order for the geometric invariance which we
want to exploit to exist. Additionally, the kernel must be locally integrable.
Clearly, a sufficient condition for this is that

(24)
∑

P∈P

γP < 1

but in general this is not necessary.
We will not attempt to locate a set of sufficient and necessary conditions

for integrability, but we remark that in the simplest new case, when the
integration is over x, y, z and w which are elements of R

2 and the integral
takes the form
(25)∫

(R2)4

f1(x)f2(y)f3(z)f4(w)
∣∣det

(
1 1 1
x y z

)∣∣α ∣∣det
(

1 1 1
x y w

)∣∣β |det ( 1 1 1
x z w )|γ

∣∣det
(

1 1 1
y z w

)∣∣δ dxdy dz dw

then the sufficient and necessary conditions are

(26) 0 ≤ α, β, γ, δ < 1 and α+ β + γ + δ < 2.

If the integrability condition and (24) hold and if Iγ cannot be factorised
into the product of two integrals then more or less the same arguments as
for the case of a single determinant give that the optimisers for (23) are
exactly those of the form (21) with the power p in the exponent replaced by
pk as appropriate.

We discuss these issues in Section 3.1.

Remark 9. If we take N functions on R
n−1 then the multilinear fractional

integration kernel of Beckner which is a function of N points is formed by
taking pairs of these points and for each pair considering the convex set
determined by the points in the pair and taking the suitably defined volume
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of this convex set. Similarly, the form (22) involves a kernel which again is a
function of N points and is formed by taking subsets containing n of these,
considering the convex set determined by them and taking the volume of
this convex set. Curiously, taking subsets of k points, for 2 < k < n, and
considering the volume of the convex set they form and forming a kernel as
a product of those gives forms which do not seem to possess a geometric
invariance which is suitable for the type of analysis which we do here.

2. The singular integral

For n ≥ 3 the positive results of Theorem 2 follow from the following
estimate.

Theorem 10. Let n ≥ 3 and χE1, . . . , χEn−1 be characteristic functions of

n − 1 measurable sets in R
n−1 and fn be a measurable function on R

n−1.

Then

(27) |Λ(χE1 , . . . , χEn−1 , fn)| . ‖χE1‖n−1
n−2

. . . ‖χEn−1‖n−1
n−2

‖fn‖1.

Let us note how we can use multilinear interpolation to pass from this
estimate to the general result of the theorem. Firstly note that convexity
gives directly that (5) holds for tuples ( 1

p1
, . . . , 1

pn
) in S if each fj is restricted

to be a characteristic function fj. Now take an element p̄ ∈ S and assume
that 1

pj
= n−2

n−1 if and only if j ≤ k where k ≤ n. Let us fix sets Ej for

1 ≤ j ≤ k and note that we have

(28) |Λ(χE1 , . . . , χEn)| .
∏

j≤k

‖χEj
‖n−1

n−2

∏

j>k

‖χEj
‖qj

if each qj is sufficiently close to pj and

n∑

j=k+1

1

qj
= 1 +

n− 2

n− 1
(n− k − 1).

This shows that we can use Marcinkiewicz interpolation, see for example [9],
to strengthen this result to

(29) |Λ(χE1 , . . . , χEk
, fk+1, . . . , fn)| .

∏

j≤k

‖χEj
‖n−1

n−2

∏

j>k

‖fj‖pj
.

By permuting the indices we arrive at the estimate of the theorem.
The remaining parts of Theorem 2 can be seen from examples which we

now present.

Example 11. Let us assume that inequality (5) holds for the dilated functions
φ1(

·
R ), . . . , φn( ·

R) for all R > 0. Then
∣∣∣∣∣

∫
φ1(

x1
R ), . . . , φn(xn

R )

det
(

1 1 ... 1
x1 x2 ... xn

) dx1 dx2 . . . dxn

∣∣∣∣∣ . ‖φ1(
·
R

)‖p1 . . . ‖φn(
·
R

)‖pn



MULTILINEAR HILBERT TRANSFROM AND FRACTIONAL INTEGRATION 9

so ∣∣∣∣∣∣

∫
φ1(

x1
R ), . . . , φn(xn

R )

det
(

1 1 ... 1
x1
R

x2
R

... xn
R

)
·Rn−1

dx1

Rn−1

dx2

Rn−1
. . .

dxn

Rn−1
·Rn(n−1)

∣∣∣∣∣∣

.

(
n∏

i=1

R
n−1
pi

)
‖φ1‖p1 . . . ‖φn‖pn

so

R(n−1)2 . R
P

(n−1) 1
pi

so

(30)
n∑

i=1

1

pi
= n− 1.

Example 12. As stated above we get for n = 2 that Λ(f, g) = π〈Hf, g〉
where Hf is the Hilbert transform of f . Thus by well-known properties we
see that

(31)

|Λ(f, g)| . ‖f‖p1‖g‖p2

if
1

p1
+

1

p2
= 1 and 1 < p1, p2 <∞.

Aside from the endpoints, this is the best estimate we could hope for in the
light of the previous example.

Example 13. When n ≥ 3 there is a further restriction on the values of pj

for which (5) can hold.
To see this let us first of all note that there exist non-empty open cones

C1, . . . , Cn with vertices at the origin in R
n−1 such that if x1 ∈ C1, . . . , xn ∈ Cn

then

det

(
1 · · · 1
x1 · · · xn

)
> 0.

To construct these cones we can for example take µ1, . . . , µn ∈ Sn−1 to be
the vertices of a regular simplex with centre at the origin. We shall denote
the simplex whose vertices are ν1, . . . , νn by T(νi). Now, the signed volume
of T(µi) is given by

(32) det

(
1 · · · 1
µ1 · · · µn

)

which can therefore not equal zero and we may furthermore assume that we
have carried out the numbering of the µ’s in such a way that this determinant
is positive.

Let us note that if the origin lies in the interior of a simplex T(νi) then it
also lies in the interior of T(riνi) for any positive scalars ri. We can prove
this iteratively if we know that this holds when all of the ri’s except one
equal 1. We may then further assume that this exceptional ri is r1.
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Now, the origin lies in the interior of T(νi) if and only if the line connecting
ν1 and the origin intersects the interior of the facet opposite ν1 and this
intersection lies beyond the origin. If we replace ν1 by rν1 for r > 0 then
this line and the opposite facet remain unaltered and the intersection will
still lie beyond the origin.

Now let Mi be a small neighbourhood in Sn−1 around νi such that for
any tuple (µ̃i) in M1 × · · · ×Mn we have that the determinant in (32) is
positive and that the origin lies in the interior of the simplex T(µ̃i).

By what we have said it is now clear that we may take Ci to be the smallest
cone with vertex at the origin which contains Mi.

With this set-up in hand we let φ1, . . . , φn be non-negative C∞
c functions

such that suppφi ⊂ Ci. We also insist that φi is supported in |x| < 1
10 for

i = 1, . . . , k while φi is supported in 1
2 < |x| < 1 for i = k+ 1, . . . , n. Here k

is an integer between 1 and n. These conditions will continue to hold if we
replace all the φi’s for i ≤ k by φi,ǫ : x 7→ φi(

x
ǫ ) for ǫ < 1. Now,

det

(
1 · · · 1
x1 · · · xn

)
= det(x2 − x1, · · · , xn − x1) ≤ |x2 − x1| · · · |xn − x1|

by Hadamard’s theorem so

Λ(φ1,ǫ, . . . ,φk,ǫ, φk+1, . . . , φn)

&

∫
· · ·
∫
φ1(

x1
ǫ ) . . . φk(

xk

ǫ )φk+1(xk+1)φn(xn)

|x2 − x1| . . . |xk − x1||xk+1| . . . |xn|
dx1 . . . dxn

because we have |xi − x1| ∼ |xi| for all i > k. We then have

Λ(φ1,ǫ, . . . , φk,ǫ,φk+1, . . . , φn)

& ǫ(n−1)k−(k−1)

∫
· · ·
∫
φ1(

x1
ǫ ) . . . φk(

xk

ǫ )φk+1(xk+1) . . . φn(xn)

|x2
ǫ − x1

ǫ | . . . |
xk

ǫ − x1
ǫ ||xk+1| . . . |xn|

dx1

ǫn−1
. . .

dxk

ǫn−1
dxk+1 . . . dxn

& ǫ(n−1)k−(k−1)

∫
· · ·
∫

φ1(x1) . . . φn(xn)

|x2 − x1| . . . |xk − x1||xk+1| . . . |xn|
dx1 . . . dxn

and
k∏

i=1

‖φi,ǫ‖pi
= ǫ

(n−1)
Pk

i=1
1
pi

n−1∏

i=1

‖φi‖pi

so we must have

ǫ(n−1)k−(k−1) . ǫ
(n−1)

Pk
i=1

1
pi for ǫ < 1

so

(n− 2)k + 1

n− 1
≥

k∑

i=1

1

pi
.
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In particular, for k = n− 1, this tells us that

n2 − 3n+ 3

n− 1
≥

n−1∑

i=1

1

pi

and this together with (30) and renaming of the variables gives us that

(33)
1

pi
≥ n− 2

n− 1

for all i = 1, . . . , n. The polyhedron defined by (30) and (33) has the per-

mutations of the n-tuple
(

n−2
n−1 , . . . ,

n−2
n−1 , 1

)
as vertices so we see that (5) can

only hold at points in S.

Example 14. Let us see that we cannot hope to strengthen the estimates on
the boundary of S to strong-type estimates.

We let Ci be as in the previous example and take φi to be non-negative
functions supported in Ci. Assume that φi is supported in |x| < 1 for i < n
and φn is supported in |x| > 10. As before we can estimate by Hadamard’s
theorem and get

(34) Λ(φ1, . . . , φn) &

∫
· · ·
∫

φ1(x1) · · ·φn(xn)

|x2 − x1| · · · |xn−1 − x1||xn|
dx1 · · · dxn.

Let us now assume that φn has the form φn(x) = φω(ω)φr(r) with x = rω
in polar coordinates where φr(r) = (rn−2 log r)−1 for 10 < r < b. Then the
right hand side of (34) contains a factor larger than

∫ b

10

1

(rn−2 log r)r
rn−2 dr =

∫ b

10

1

log r

dr

r
= log b− log 10.

On the other hand we see that

‖φn‖n−1
n−2

= C

(∫ b

10

(
1

rn−2 log r

)n−1
n−2

rn−2 dr

)n−2
n−1

= C

(∫ b

10

(
1

log r

)n−1
n−2 dr

r

)n−2
n−1

which is less than a constant independent of b. Since b can be arbitrarily
large we get a contradiction unless

1

pj
>
n− 2

n− 1
.

Remark 15. It is clear that we can adapt Example 11 for R < 1 and Exam-
ple 13 to the form ΛS . This proves the negative part of Theorem 4.

Let us see that the positive part of the theorem follows from proving the
estimate for points ( 1

p1
, . . . , 1

pn
) in the interior of S (relative to Π). Take

p̄ ∈ S̃. By reordering the indices, we may assume that 1
p1

≥ · · · ≥ 1
pn

. Our

aim is to find a point q̄ = ( 1
q1
, . . . , 1

qn
) in the interior of S such that qi ≤ pi.

The main argument in the proof of Theorem 4 applies to the point q̄ and
the result for p̄ follows since the underlying space Sn−1 is compact.
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Figure 1. n = 3 The estimate (5) holds in the open un-
shaded region and fails in the open shaded region.

Take q̄ such that there exists a i0 so that qi = pi for i < i0 and qi = qi0
for i ≥ i0. Furthermore we require pi0 ≥ qi0 > pi0−1 and

∑ 1
qi

= n−1. Note

that either q1 = p1 > 1, where the strict inequality follows from the defining
inequality for S̃ in the case k = 1, A = {1}, or qi = n−1

n > 1 for all i. Also,
the defining inequality gives in the case k = i0 − 1, A = {1, . . . , i0 − 1} that

i0−1∑

i=1

1

qi
=

i0−1∑

i=1

1

pi
<

(n− 2)(i0 − 1) + 1

n− 1

so we get that

1

qi0
=

1

n− i0 + 1

n∑

i=i0

1

qi
>

1

n− i0 + 1

(
n− 1 − (n− 2)(i0 − 1) + 1

n− 1

)
=
n− 2

n− 1
.

This shows that q̄ is in the interior of S as required.

Proof of Theorem 10. The proof will be based on Theorem 4 and Lemma 16
below. First of all we note that

|Λ(χE1 , . . . , χEn−1 , fn)| =

∣∣∣∣∣

∫
χE1(x1) · · ·χEn−1(xn−1)fn(xn)

det
(

1 ... 1
x1 ... xn

) dx1 · · · dxn

∣∣∣∣∣

≤ ‖fn‖1 sup
xn

∣∣∣∣∣

∫
χE1(x1) · · ·χEn−1(xn−1)

det
(

1 ... 1
x1 ... xn

) dx1 · · · dxn−1

∣∣∣∣∣

≤ ‖fn‖1 sup
xn

∣∣∣∣∣

∫
χE1(x1) · · ·χEn−1(xn−1)

det
(

1 ... 1 1
x1−xn ... xn−1−xn 0

) dx1 · · · dxn−1

∣∣∣∣∣

= ‖fn‖1 sup
xn

∣∣∣∣∣

∫ χẼ1
(x1) · · ·χẼn−1

(xn−1)

det(x1, . . . , xn−1)
dx1 · · · dxn−1

∣∣∣∣∣
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where Ẽi := Ei − xn. Since ‖χẼi
‖p = ‖χEi

‖p we will drop these tildes.

Let us then define Λ̃(χE1 , . . . χEn−1) to be the quantity inside the modu-
lus signs on the far right hand side of the last chain of inequalities. We
change to polar coordinates, xi = riωi with ri ∈ R+ and ωi ∈ Sn−2. Then
det(x1, . . . , xn−1) = r1 · · · rn−1 det(ω1, . . . , ωn−1) and dxi = rn−2

i dri dωi

(dωi is the unnormalised induced Lebesgue measure on the sphere) so

Λ̃(χE1, . . . , χEn−1) =

∫
χE1(r1ω1) · · ·χEn−1(rn−1ωn−1)

r1 · · · rn−1 det(ω1, . . . , ωn−1)

· (r1 · · · rn−1)
n−2 dr1 · · · drn−1 dω1 · · · dωn−1

=

∫
Fn−1(χE1)(ω1) · · ·Fn−1(χEn−1)(ωn−1)

det(ω1, . . . , ωn−1)
dω1 · · · dωn−1

= ΛS(Fn−1(χE1), . . . , Fn−1(χEn−1))(35)

where Fn−1(f)(ω) =
∫

R+
f(rω)rn−3 dr and in (35) we have that ΛS acts on

functions on Sn−2. Thus we have separated Λ̃ into a radial part, Fn−1, and
an angular part. By Theorem 4 we can estimate (35) by a constant multiple
of

‖Fn−1(χE1)‖
L

n−1
n−2 (Sn−2)

· · · ‖Fn−1(χEn−1)‖
L

n−1
n−2 (Sn−2)

so Theorem 2 will follow from the following lemma. �

Lemma 16.

(36) ‖Fn−1(χE)‖
L

n−1
n−2 (Sn−2)

. ‖χE‖
L

n−1
n−2 (Rn−1)

.

Remark 17. We note that the estimate in this lemma does not hold for gen-
eral functions as can be seen by testing on the function f(rω) = (rn−2 log r)−1

similarly to Example 14.

Proof of Lemma 16. If n = 3 we want to prove that
∥∥∥∥
∫

R+

χE(rω) dr

∥∥∥∥
L2(S1)

. ‖χE‖L2(R2)

which is equivalent to

∫

S1

∣∣∣∣
∫

R+

χE(rω) dr

∣∣∣∣
2

dω .

∫

S1

∫

R+

|χE(rω)|2r dr dω.

Define Eω := {r ∈ R+ : rω ∈ E}. We see that it is enough to prove that
|Eω|2 .

∫
Eω
r dr holds for each ω ∈ S1. The left hand side in this inequality

depends only on the measure of Eω and the infimum of the right hand side,
for sets of fixed measure, is clearly attained when Eω = [0, |Eω |]. In this
case

∫
Eω
r dr = 1

2 |Eω|2 so |Eω|2 ≤ 2
∫
Eω
r dr.
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More generally, the same reasoning shows that |Eω|m .
∫
Eω
rm−1 dr. It

follows that
∫

Eω

rn−3 dr ≤
(∫

Eω

(rn−3)
n−2
n−3 dr

)n−3
n−2

(∫

Eω

dr

)1−n−3
n−2

(by Hölder)

=

(∫

Eω

rn−2 dr

)n−3
n−2

(∫

Eω

dr

) 1
n−2

.

(∫

Eω

rn−2 dr

)n−3
n−2

(∫

Eω

rn−2 dr

) 1
(n−2)(n−1)

=

(∫

Eω

rn−2 dr

)n−2
n−1

which is to say that

(∫

Eω

rn−3 dr

)n−1
n−2

.

∫

Eω

rn−2 dr.

Then we see that
∫

Sn−2

∣∣∣∣
∫

R+

χE(rω)rn−3 dr

∣∣∣∣

n−1
n−2

dω .

∫

Sn−2

∫

R+

χE(rω)rn−2 dr dω

so

‖Fn−1(χE)‖
L

n−1
n−2 (Sn−2)

. ‖χE‖
L

n−1
n−2 (Rn−1)

.

This completes the proof of the lemma. �

Proof of Theorem 4. For n = 2 we see that

ΛS(f1, f2) =

∫

S1

∫

S1

f1(ω1)f2(ω2)

sin(ω1 − ω2)
. ‖f1‖Lp1 (S1)‖f2‖Lp2 (S1)

provided that p1, p2 > 1 and 1
p1

+ 1
p2

= 1 since (sin(ω1−ω2))
−1 = 1

2 tan 1
2(ω1−

ω2) + 1
2 cot 1

2(ω1 − ω2) so the left hand side is the sum of two Hilbert trans-
forms and the result is known.

So that we have a clearer relation with the proof of Theorem 10 we shall
now change our indexing and in effect increase n by one. We will proceed
by using induction and will assume that we have some n ≥ 4 and that we
have proved Corollary 6 on Sn−3, that is

(37) |ΛS(f1, . . . , fn−2)| . ‖f1‖
L

n−2
n−3 (Sn−3)

. . . ‖fn−2‖
L

n−2
n−3 (Sn−3)

and we are interested in proving

(38) |ΛS(f1, . . . , fn−1)| . ‖f1‖Lp1 (Sn−2) . . . ‖fn−1‖Lpn−1 (Sn−2)

with
(

1
p1
, . . . , 1

pn−1

)
in the interior of S (with n replaced by n−1). Again by

multilinear interpolation, it is enough to prove the estimate for characteristic
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functions at the vertex (n − 1-tuple)
(

n−3
n−2 , . . . ,

n−3
n−2 , 1

)
. We proceed in the

following manner. By definition, ΛS(f1, . . . , fn−1) equals

(39)
1

2

∫
(f1(ω1) − f1(ω

∗
1))f2(ω2) · · · fn−1(ωn−1)

det(ω1, . . . , ωn−1)
dω1 · · · dωn−1

where ω∗
1 is the reflection of ω1 in the great hypercircle containing ω2 up to

ωn−1. We bound this by

‖fn−1‖L1(Sn−2) sup
ωn−1

∣∣∣∣
1

2

∫
(f1(ω1) − f1(ω

∗
1))f2(ω2) · · · fn−2(ωn−2)

det(ω1, . . . , ωn−1)
dω1 · · · dωn−2

∣∣∣∣

We thus want to show that

(40)
sup
ωn−1

∣∣∣∣
1

2

∫
(f1(ω1) − f1(ω

∗
1))f2(ω2) · · · fn−2(ωn−2)

det(ω1, . . . , ωn−1)
dω1 · · · dωn−2

∣∣∣∣

. ‖f1‖
L

n−2
n−3 (Sn−2)

· · · ‖fn−2‖
L

n−2
n−3 (Sn−2)

holds for all fj being characteristic functions.

By rotational invariance, we can take ωn−1 to be the north pole
(1
0

)
. We

then split the integral in each of the variables ω1 . . . ωn−2 into two integrals,
one over each hemisphere.

Because

det(ω1, . . . ,−ωi, . . . , ωn−1) = − det(ω1, . . . , ωi, . . . , ωn−1)

it is enough to consider the integral over the northern hemispheres

Sn−2
+ := {ω0 = (ω01, . . . , ω0,n−1) ∈ Sn−2 : ω01 > 0}.

Since ω∗
1 is the reflection of ω1 in a great hypercircle containing the north

pole we see that ω1 and ω∗
1 will always lie in the same hemisphere. To work

with the integral over Sn−2
+ we change variables from Sn−2

+ to {1} × R
n−2.

Specifically, we write ω0 ∈ Sn−2
+ as (cos θ0, ω̃0 sin θ0) where 0 ≤ θ0 <

π
2 and

ω̃0 ∈ Sn−3. Define

ψ(ω0) :=
1

cos θ0
(cos θ0, ω̃0 sin θ0) = (1, ω̃0 tan θ0).

Since ω̃0 ∈ Sn−3, the expression ω̃0 sin θ0 for a fixed ω̃0 parametrises an
(n − 3) dimensional sphere of radius sin θ0 and the expression ω̃0 tan θ0
parametrises a similar sphere of radius tan θ0. This contributes a factor

(
sin θ0
tan θ0

)n−3

= cosn−3 θ0

to (Jψ−1)(ψ(ω0)). Also,

∂ψ

∂θ0
(ω0) =

∂

∂θ0
tan θ0 =

1

cos2 θ0
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so (Jψ−1)(ψ(ω0)) = cosn−1 θ0. The integral (40) thus becomes

∫

({1}×Rn−2)n−2

f1(ψ
−1(x̃1)) . . . fn−2(ψ

−1(x̃n−2))

det
(

ex1
|ex1|

, . . . , exn−2

|exn−2|
1
0

)
(

n−2∏

i=1

cos θi0

)n−1

dx̃1 · · · dx̃n−2

and we can pull |x̃i| =
√

1 + tan2 θi0 = (cos θi0)
−1 out of the determinant.

Let x̃i =
(

1
yi

)
and ψ−1(x̃i) = ψ̃−1(yi). Then since

cos θi0 =
1

|x̃i|
=

1

(1 + |yi|2)
1
2

we see that the integral becomes
∫

(Rn−2)n−2

f1(ψ̃
−1(y1)) . . . fn−2(ψ̃

−1(yn−2))

det (y1, . . . , yn−2)

n−2∏

i=1

1

(1 + |yi|2)
n−2

2

dy1 · · · dyn−2

=

∫

(Sn−3)n−2

∫

(R+)n−2

f1(ψ̃
−1(r̃1ω̃1)) . . . fn−2(ψ̃

−1(r̃n−2ω̃n−2))

r̃1 . . . r̃n−2 det (ω̃1, . . . , ω̃n−2)

n−2∏

i=1

1

(1 + r̃2i )
n−2

2

(r̃1 . . . r̃n−2)
n−3 dr̃1 · · · dr̃n−2 dω̃1 · · · dω̃n−2

where we have changed to polar coordinates again. By the induction hy-
pothesis we can estimate the angular part of this by

n−2∏

i=1

‖
∫
fi(ψ̃

−1(r·))
(1 + r)

n−2
2

rn−4 dr‖
L

n−2
n−3 (Sn−3)

.

We want to bound this by

n−2∏

i=1

‖fi‖
L

n−2
n−3 (Sn−2)

.

for characteristic functions fi.
Similarly to the proof of Lemma 16 this boils down to proving

(∫

E

rn−4

(1 + r2)
n−2

2

dr

)n−2
n−3

.

∫

E

rn−3

(1 + r2)
n−1

2

dr

for all measurable E ⊆ R+.
To prove this we note first the following:

(∫

E

1

1 + r2
dr

)m+1

.

∫

E

rm

(1 + r2)
m+2

2

dr.

To see this let r = tanα, then dr
1+r2 = dα and (1 + r2)−1/2 = (1 +

tan2 α)−1/2 = cosα so what we want to prove is
(∫

eE
dα

)m+1

.

∫

eE
tanm α cosm α dα =

∫

eE
sinm αdα.
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In fact, we only have to prove this for Ẽ ⊆ (0, c) where c > 0 is small. In
that case we can substitute the first term in its Taylor series for sinm α and
then the result follows from the proof of Lemma 16. Now this already proves
the result for n = 4 (take m = 1).

For n > 4 we calculate using Hölder’s inequality

∫

eE

rn−4

(1 + r2)
n−2

2

dr ≤
(∫

eE

rn−3

(1 + r2)
n−1

2

dr

)n−4
n−3 (∫

eE

1

1 + r2
dr

) 1
n−3

.

(∫

eE

rn−3

(1 + r2)
n−1

2

dr

)n−4
n−3

(∫

eE

rn−4

(1 + r2)
n−2

2

dr

) 1
(n−3)2

and the result follows.
Now Theorem 4 follows for all n ≥ 3 by induction. �

Proof of Theorem 7. The proof follows the induction step in the proof of
Theorem 4 closely. We will only indicate the differences.

We may immediately reduce ourselves to the case where the functions fi

are defined on H
n−2
+ , the upper sheet of the hyperboloid.

Next, inequality (40) contains a supremum over qn−1 ∈ H
n−2
+ . Instead of

rotational invariance, we use invariance under the action of O(1, n − 2) to
show that we may take qn−1 as ( 1

0 ). Here it is important to note that if qn−1

is in the upper sheet and A ∈ O(1, n− 2) takes qn−1 to ( 1
0 ) then det(A) = 1

so

det(Aq1, . . . , Aqn) = det(A) det(q1, . . . , qn) = det(q1, . . . , qn).

For the definition of the map ψ we note that q0 ∈ H
n−2
+ can be written

as (cosh θ0, ω̃0 sinh θ0) where 0 ≤ θ0 and ω̃0 ∈ Sn−3. Then we define

ψ(q0) :=
1

cosh θ0
(cosh θ0, ω̃0 sinh θ0) = (1, ω̃0 tanh θ0).

With the trigonometric functions replaced by the corresponding hyperbolic
functions the ensuing calculations go through. We note that

cosh θi0 =
1

(1 − |yi|2)
1
2

and see that eventually we wish to prove the estimate

n−2∏

i=1

‖
∫ 1

0

fi(ψ̃
−1(r·))

(1 − r2)
n−2

2

rn−4 dr‖
L

n−2
n−3 (Sn−3)

.

n−2∏

i=1

‖fi‖
L

n−2
n−3 (Hn−2)

.

for characteristic functions fi. We note that in the integration on the left
hand side, the variable r arose as |yi| = tanh θ0 < 1 and this gives the limit
of integration. As before this reduces to proving

(∫

E

rn−4

(1 − r2)
n−2

2

dr

)n−2
n−3

.

∫

E

rn−3

(1 − r2)
n−1

2

dr
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for all measurable E ⊆ [0, 1 − ǫ] which follows the same lines as before and
the bound does not depend on ǫ.

With this we have reduced integration over H
n−2 to an integration over

Sn−3, so now the statement of Theorem 4 applies. �

Finally, let us return to the question how the forms are defined and prove
Lemma 1.

Proof. To begin we take n = 3, the case n = 2 which is the Hilbert transform
is of course well known. We thus want to show that

1

2

∫

R2

∫

R2

∫

R2

∣∣∣∣∣
(f1(x1) − f1(x

∗
1))f2(x2)f3(x3)

det
(

1 1 1
x1 x2 x3

)
∣∣∣∣∣ dx1 dx2 dx3

is bounded. We can write this as
∫

R2

∫

R2

∫

R2

|f1(x1) − f1(x
∗
1)|

|x1 − x∗1|
dx1

∣∣∣∣
f2(x2)f3(x3)

D(x2, x3)

∣∣∣∣ dx2 dx3

where D(x2, x3) is the distance between x2 and x3. We see that the x1

integral is bounded as if x∗1 is close to x1 we can estimate the integrand by
f ′1(x1) and otherwise we can estimate it by a multiple of |f1(x1)|+ |f1(x

∗
1)|.

For the other integrals we see that it is enough to show that
∫

BR(0)

∫

BR(0)

1

|D(x2, x3)|
dx2 dx3

is bounded where BR(0) denotes the ball of radius R around the origin. By
letting x3 = x2 + y we can estimate this by

C

∫

B2R(0)

dy

|y|
and by changing to polar coordinates y = rθ we can estimate this by

C

∫

r≤2R

r dr

r

which is clearly bounded.
For the general case we proceed in the same way and we reduce our

problem to showing that

(41)

∫

BR(0)
. . .

∫

BR(0)

1

|D(x2, . . . , xn)| dx2 . . . dxn

is bounded where BR(0) is a ball in R
n−1 and D(x2, . . . , xn) is the n −

2 dimensional volume of the simplex whose vertices are x2, . . . , xn in the
hyperplane of R

n−1 in which these points lie. As in our main argument,
the boundedness of this can be shown by changing variables to separate
out the contribution from x2, changing to polar coordinates in the other
variables, bounding the radial part directly and finally changing variables
in the angular part to reduce to (41) again but with one less variable. The
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same argument works for ΛS and thus we have shown the first part of the
lemma.

For the second part we wish to show that

(42)

∫
(f1(x1)f2(x

∗
2) − f1(x

∗
1)f2(x2))f3(x3) · · · fn(xn)

det
(

1 1 ... 1
x1 x2 ... xn

) dx1 · · · dxn = 0.

We note that almost every tuple (x3, . . . , xn) lies in a uniquely determined
affine plane in R

n−1 of codimension 2 and we can write x1 = x10+r(cos(θ)e1+
sin(θ)e2) and x2 = x20+s(cos(φ)e1+sin(φ)e2) where x10, x20 lie in this plane
and e1 and e2 are orthogonal unit vectors orthogonal to the plane. With
these definitions we get that

det

(
1 1 . . . 1
x1 x2 . . . xn

)
= D(x3, . . . , xn)rs sin(θ − φ)

where nowD(x3, . . . , xn) denotes the n−3 dimensional volume of the simplex
whose vertices are x3, . . . , xn. With this we can write the integral in (42) as
(43)∫

f(x3) · · · f(xn)

D(x3, . . . , xn)

(∫
(f1(x1)f2(x

∗
2) − f1(x

∗
1)f2(x2))

rs sin(θ − φ)
dx1 dx2

)
dx3 · · · dxn.

As above we can justify that the quantity outside of the inner integral is
integrable. Let us therefore study the inner integral more carefully. We
define Aǫ = {(x1, x2)|| sin(θ − φ)| > ǫ}. This definition depends on the
variables x3, . . . , xn but we shall suppress that. Note that limǫ→0Aǫ =
(Rn−1)2 almost everywhere.

Let us study the inner integral in (43) restricted to the set Aǫ. First of
all note that∫

Aǫ

∣∣∣∣
f1(x1)f2(x

∗
2)

rs sin(θ − φ)

∣∣∣∣ dx1 dx2 ≤ C

∫

{r<R}∩{s<R}∩Aǫ

∣∣∣∣
1

rs sin(θ − φ)

∣∣∣∣ rs dr ds dθ dφ

where we have carried out the x10 and x20 integrations and used the as-
sumption that f1 and f2 are compactly supported. We note that the last
integral is clearly bounded although the bound depends on ǫ.

For the whole inner integral restricted to Aǫ we are therefore justified in
calculating

∫

Aǫ

(f1(x1)f2(x
∗
2) − f1(x

∗
1)f2(x2))

rs sin(θ − φ)
dx1 dx2

=

∫

Aǫ

f1(x1)f2(x
∗
2)

rs sin(θ − φ)
dx1 dx2 −

∫

Aǫ

f1(x
∗
1)f2(x2)

rs sin(θ − φ)
dx1 dx2.

A change of variables x2 7→ x∗2 in the first integral and x1 7→ x∗1 in the second
yields

∫

Aǫ

f1(x1)f2(x2)

−rs sin(θ − φ)
dx1 dx2 −

∫

Aǫ

f1(x1)f2(x2)

−rs sin(θ − φ)
dx1 dx2 = 0

Since the integral in (42) is absolutely integrable we get by letting ǫ pass to
0 and an application of the dominated convergence theorem that (43) holds.
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This completes the proof of the second part of the lemma and the third part
is proved similarly. �

3. The fractional integral

Proof of Theorem 8. Let us introduce the Steiner symmetrisation of a func-
tion. For E ⊆ R

n of finite Lebesgue measure we define the symmetric
rearrangement of E as the open ball centred at the origin that has the same
measure as E. We denote this by E∗. We then define the Steiner sym-
metrisation, Rjf = f∗j, of a function f with respect to the j-th coordinate
direction as

f∗j(x1, . . . , xn) =

∫ ∞

0
χ{|f(x1,...,xj−1,·,xj+1,...,xn)|>t}∗(xj) dt.

We can see that f∗j is a non-negative measurable function which decreases as
the absolute value of the j-th coordinate increases. Also, f and f∗ have the
same distribution functions and therefore ‖f‖p = ‖f∗‖p for all 1 ≤ p ≤ ∞.
Finally, we can see that the map f 7→ f∗ is order preserving, in the sense
that if f and g are two non-negative functions and f(x) ≤ g(x) for all x
then also f∗(x) ≤ g∗(x) for all x.

We would now like to estimate Λα(f1, . . . , fn) by Λα(f∗1 , . . . , f
∗
n). Since

det

(
1 . . . 1
x1 . . . xn

)

is not a linear combination of the xi’s we cannot apply the rearrangement
inequality of Brascamp, Lieb and Luttinger [3] directly. There exists a gen-
eralisation of it by Christ [7] which is applicable. However, in order to find
all of the optimisers we need to study the cases of equality in the inequality
and the argument of Brascamp, Lieb and Luttinger and the extension of
Christ do not seem suitable for that study. We shall proceed more directly
in order to be able to use the results of Burchard [4], see also [5].

Let us split each of the n integrals over R
n−1 into integrals over R

n−2 ×
R by separating out the integration in the j-th coordinate. Write xi ∈
R

n−1 as (xi̂, xij) where xij is the j-th coordinate of xi. Then we can write
Λα(f1, . . . , fn) as
(44)
∫

(Rn−2)n

(∫

Rn

f1(x1̂, x1j) . . . fn(xn̂, xnj)∣∣det
(

1 ... 1
x1 ... xn

)∣∣α dx1j . . . dxnj

)
dx1̂ . . . dxn̂.

We can work with the term in parentheses with the additional assumption
that the xi̂’s are fixed for all i’s and then

det

(
1 . . . 1
x1 . . . xn

)

is a linear combination of x1j , . . . , xnj .
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We now recall that if we define
(45)

I(f1, . . . , fm+1) =

∫
· · ·
∫
f1(x1) . . . fm(xm)fm+1




m∑

j=1

bjxj


 dx1 . . . dxm.

then

(46) I(f1, . . . , fm+1) ≤ I(f∗1 , . . . , f
∗
m+1).

This is in fact a special case of the inequality of Brascamp, Lieb and Lut-
tinger. However, for this inequality Burchard, [4], has determined the cases
of equality as follows.

Lemma 18. Assume that f1, . . . , fm+1 are non-negative functions on R
n,

fm+1 is symmetric decreasing and we have equality in (45). Then there are

vectors a1, . . . , am ∈ R
n such that

∑
biai = 0 and fi(xi) = f∗i (xi − ai) for

all i = 1, . . . ,m.

Burchard states her result with each bj = 1 but by making the change of
variables xj 7→ bjxj the theorem reduces to that case.

We take the functions to be f1(x1̂, ·), . . . , fn(xn̂, ·), and | · |−α. Now,
| · |−α is a symmetric decreasing function so (| · |−α)∗ = | · |−α and fi(xi̂, ·)∗ =

f∗ji (xi̂, ·) where, as before, f∗j denotes the Steiner symmetrisation of f with
respect to the j-th coordinate direction. Inequality (46) then tells us that

(47) Λα(f1, . . . , fn) ≤ Λα(f∗j1 , . . . , f∗jn )

for any 1 ≤ j ≤ n− 1.

s = S(x)

x

Let S : R
n−1 → Sn−1

+ be the stereographic projection from R
n−1 to the

northern hemisphere Sn−1
+ . To a function f on R

n−1 we associate a function

F on Sn−1
+ defined by

(48) F (s) = |JS−1(s)|
1
p f(S−1(s))

where JS−1 is the Jacobian determinant of the map S−1. Then ‖f‖p = ‖F‖p

and it is easily seen that
(49)∫

(Rn−1)n

f1(x1) . . . fn(xn)∣∣det
(

1 ... 1
x1 ... xn

)∣∣α dx1 . . . dxn =

∫

(Sn−1
+ )n

F1(s1) . . . Fn(sn)

|det(s1 . . . sn)|α ds1 . . . dsn.

Here the relationship 1/p = 1 − α/n is key.
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We can rotate the hemisphere, by rotating the whole sphere and sending
points that are rotated to the southern hemisphere to their antipodal points
that lie in the northern hemisphere. The rotated functions give the same
value for the integral but correspond to new functions on R

n−1. We will

use U j
γf to denote the function we get by rotating F by the rotation that

leaves all basis vectors except the j-th and the n-th ones fixed and rotates
the plane spanned by those two by γ. We will require that γ is not a rational

multiple of π. We note that f 7→ U j
γf is order preserving.

For a function f we define a sequence (fm)m≥0 in the following way:

f0 = f, f1 = Rn−1 . . .R1U
1
γf

0,

f2 = R1Rn−1 . . .R2U
2
γ f

1, · · · fn−1 = Rn−2 . . .R1Rn−1U
n−1
γ fn−2,

fn = Rn−1 . . .R1U
1
γf

n−1, · · · .
We want to find the Lp limit of this sequence. First, let us assume that f

is a bounded function which vanishes outside a bounded set. These functions
are clearly dense in Lp. With this assumption we can find a constant C such
that

(50) f(x) ≤ Ckf (x)

where kf (x) is a multiple of k(x) from (20) scaled such that ‖f‖p = ‖kf‖p.
We notice that kf (x) is a symmetric decreasing function which corresponds

to a constant function K on on Sn−1
+ . It is thus unaffected by Rj and U j

γ .

Since f(x) > 0 and both Rj and U j
γ preserve orderings of non-negative

functions we have that

(51) fm(x) ≤ Ckm
f (x) = Ckf (x)

for all x and m so the whole sequence (fm) is dominated by an Lp function.
Since

(52) ‖kf − U j
γf‖p = ‖U j

γkf − U j
γf‖p = ‖kf − f‖p

and

(53) ‖kf −Rjf‖p = ‖Rjkf −Rjf‖p ≤ ‖kf − f‖p

since rearrangements are contractive in Lp space we have that

(54) lim
m→∞

‖kf − fm‖

exists and is equal to

(55) inf
m

‖kf − fm‖.

We call this number A. It is finite since ‖kf − f‖p ≤ ‖kf‖p + ‖f‖p <∞.
We make the following definition:

Definition 19. Let f be a non-negative function. We say that f has the
outward decreasing property if for all x, y ∈ R

n−1 such that |xi| ≤ |yi| for all
1 ≤ i ≤ n then f(x) ≥ f(y).
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Note that a function which has the outward decreasing property is invari-
ant under a reflection along any coordinate hyperplane.

Lemma 20. The functions fm have the outward decreasing property for

m ≥ 1.

Proof. It is clear that it is enough to show that g = R1R2f has the property
that if 0 ≤ x1 ≤ y1, 0 ≤ x2 ≤ y2 and xi = yi ≥ 0 for i ≥ 3 then g(x) ≥ g(y).

Furthermore, since g = R1(R2f) it is clear that if we also assume that
x1 = y1 since increasing the value of the first variable while keeping the
others fixed will not increase the value of g since g is the image of a Steiner
rearrangement in the first variable. So it is enough to study the case x1 = y1,
xi = yi for i ≥ 3 and x2 ≤ y2. Obviously, in this case,

(56) R2f(x) ≥ R2f(y).

Now set λ := g(y). Then

|{t : g(t, y2, . . . , yn−1) ≥ λ} = 2y1

so
|{t : R2f(t, y2, . . . , yn−1) ≥ λ} = 2y1.

Since x2 ≤ y2 we have that

R2f(t, x2, y3, . . . , yn−1) ≥ R2f(t, y2, y3, . . . , yn−1)

for all t, y3, . . . , yn−1 so

|{t : R2f(t, x2, y3, . . . , yn−1) ≥ λ} ≥ 2y1

which is
|{t : R2f(t, x2, x3, . . . , xn−1) ≥ λ} ≥ 2x1

and this tells us that

g(x) = R1R2f(x1, . . . , xn−1) ≥ λ

so g(x) ≥ g(y). This completes the proof of the lemma. �

Using this property and Helly’s selection principle we can find a subse-
quence fmj which converges to some h almost everywhere. We can also
impose the condition that (n− 1) divides mj for all j. It is clear that this h
will also have the outward decreasing property. Since all the functions fm

are dominated by the Lp function Chf we see that h belongs to Lp and

(57) A = lim
j→∞

‖fmj − kf‖p = ‖h− kf‖p.

However, we also have

A = lim
j→∞

‖fmj+1 − kf‖p = ‖Rn−1 . . .R1U
1
γh− kf‖p

so

A ≤ ‖Rn−1 . . .R1U
1
γh− kf‖p = ‖Rn−1 . . .R1U

1
γh−Rn−1 . . .R1U

1
γkf‖p

≤ ‖U1
γh− U1

γkf‖p = ‖h− kf‖p = A
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which tells us that we must have equality everywhere in the chain. In par-
ticular,

‖R1U
1
γh− kf‖p = ‖U1

γh− kf‖p.

Equality can only hold here, see eg. [6], provided that that for almost every
x2, . . . , xn−1 we have that

R1U
1
γh(x) = U1

γh(x).

Thus we have shown that both h and U1
γh are invariant under the reflection

h(x1, x2, . . . , xn−1) 7→ T 1h := h(−x1, x2, . . . , xn−1)

and since U1
−γh = T 1UγT 1h we see that U1

−γh = U1
γh so U1

2γh = U1
γU

1
γh =

U1
γU

1
−γh = h. Since γ is not a rational multiple of π we see that H, the

function on the northern hemisphere associated to h, is constant along curves
which are intersections of the northern hemisphere and translates of the x1xn

coordinate plane. This also tells us that

(58) h = U1
γh = R1U

1
γh a.e.

Now we can use the chain of equalities

(59) ‖Rn−1 . . .R1U
1
γh− kf‖p = · · · = ‖R1U

1
γh− kf‖p = ‖U1

γh− kf‖p

to see that

(60) Rn−1 . . .R1U
1
γh = · · · = R1U

1
γh = U1

γh = h a.e.

We also have

(61) R2U
2
γRn−1 . . .R1U

1
γh = U2

γRn−1 . . .R1U
1
γh

so the same argument tells us that the function on the northern hemisphere
associated to Rn−1 . . .R1U

1
γh is constant along curves which are intersec-

tions of the northern hemisphere and translates of the x2xn coordinate plane.
Since Rn−1 . . .R1U

1
γh = h a.e. we see that H is a.e. constant on 3-spaces

which are parallel to the x1x2xn-coordinate 3-space.
From this discussion the induction is evident and the result will be that

H is a.e. constant on the northern hemisphere and since h has the outward
decreasing property we see that H must be constant everywhere and h must
have the form Ckf for some C. Since ‖h‖p = limj→∞ ‖fmj‖p = ‖f‖p =
‖kf‖p we see that C = 1 and h = kf .

This tells us that A = 0 and since (‖kf − fm‖p)
∞
m=0 is a decreasing

sequence with a subsequence which tends to 0 we see that the whole sequence
(fm) tends to kf . We have thus shown that for any f in the dense class of
Lp functions we started with that fm → kf . Since ‖kf − k′f‖p ≤ ‖f − f ′‖p

for any f, f ′ ∈ Lp we see that for any f ∈ Lp we have that fm → kf in Lp.
Now

(62) H(fm
1 , . . . , f

m
n ) ≤ H(fm+1

1 , . . . , fm+1
n )

for every m ≥ 0 so

(63) H(f1, . . . , fn) ≤ H(kf , . . . , kf ) = H(k, . . . , k).
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This tells us that (k, . . . , k) is an optimiser for Λα.
Now let us find all the non-negative functions which furnish the best

constant. Using Lemma 18 we can see that

Λα(f1, . . . , fn) = Λα(f∗j1 , . . . , f∗jn )

can hold only if fi(x) = f∗ji (x− aiej) where ej is the j-th coordinate vector
and the ai’s satisfy

(64) det




1 . . . 1
x11 . . . xn1
...

...
x1,j−1 . . . xn,j−1

a1 . . . an

x1,j+1 . . . xn,j+1
...

...
x1,n−1 . . . xn,n−1




= 0.

This conclusion holds provided that all the adjoint matrices of the ai’s are
nonzero and that is true for almost any x1, . . . , xn ∈ R

n−1.
Now, let us say that for some x2̂, . . . , xn̂, where we do not specify the

j-th coordinate in each vector, we have found that fi(xi̂, ·) has centre at ai

for 2 ≤ i ≤ n. Then we can see that for any xi̂ the centre of f1(x1̂, ·) must
be at the point a1 such that all the (xi̂, ai) lie in some (n− 2)-dimensional
hyperplane. Then, by moving the xi̂’s around one by one for 2 ≤ i ≤ n we
can see that there must exist a hyperplane where all the points (xi̂, ai) lie.

This tells us that if (f1, . . . , fn) is an optimiser for our operator then the
functions have the form fi(xi) = hi(Mxi+b) where the hi’s have the outward
decreasing property, M is an (n − 1) × (n − 1) matrix with determinant 1
and b ∈ R

n−1.
Now, the transformations f 7→ U j

αf and f 7→ f(M · +b) span a group G.
It is now clear that for an optimiser (f1, . . . , fn) the rearrangements Rjfi

will be of the form Tgf for some g ∈ G and thus the whole sequence (fm)m≥0

will be of the form Tgmfi for some gm ∈ G, the same gm for each i.
Since the elements of G are isometries of Lp we have that

0 = lim
m→∞

‖fm
i − kfi

‖p = lim
m→∞

‖fi − Tg−1
m
kfi

‖p.

We shall see that for any g ∈ G we have

(65) Tgkf (x) =

((
x
1

)T

ATA

(
x
1

))− n
2p

for some real n× n matrix with determinant 1.

Let fA(x) = ‖A ( x
1 )‖−

n
p . Then fA(Mx+b) =

∥∥A
(

Mx+b
1

)∥∥−n
p = ‖A′ ( x

1 )‖−
n
p

with A′ = A
(

M b
0 1

)
so A′ is again a real n× n matrix with determinant 1.
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Now consider U j
α for some j. Without loss of generality we can take j = 1.

Then

U1
αfA(x) =

(
1

1 + |x|2
1 + |w|2
‖A ( w

1 )‖2

) n
2p

where ( w
1 ) is the point in R

n we get by starting with ( x
1 ), projecting it to

the hemisphere, that is, to 1√
1+|x|2

( x
1 ), then rotating in the x1xn-plane by

−α, this sends

1√
1 + |x|2

(
x
1

)
=

1√
1 + |x|2



x1

x̂1

1




to

1√
1 + |x|2




cosαx1 + sinα
x̂1

− sinαx1 + cosα


 ,

and finally projecting this point to the plane ( w
1 ), which sends it to




(cosαx1 + sinα)/(− sin αx1 + cosα)
x̂1/(− sinαx1 + cosα)

1


 ;

so w = (− sinαx1 + cosα)−1
(

cos αx1+sinα
x̂1

)
=: w−1

n

( w1
x̂1

)
. Since w2

1 + w2
n =

x2
1 + 1 we have that

(
1

1 + |x|2
1 + |w|2
‖A ( w

1 )‖2

) n
2p

=




1

1 + |x|2
1 + x2

1 + |x̂1|2∥∥∥A
( w1

x̂1
wn

)∥∥∥
2




n
2p

=
∥∥∥A
( w1

x̂1
wn

)∥∥∥
−n

p

and since


w1

x̂1

wn


 =




cosαx1 + sinα
x̂1

− sinαx1 + cosα


 =




cosα 0 sinα
0 I 0

− sinα 0 cosα





x1

x̂1

1




we get

U1
αfA(x) =

1

‖A′ ( x
1 )‖

n
p

with

A′ = A




cosα 0 sinα
0 I 0

− sinα 0 cosα




and again A′ has determinant 1.

Since the set of functions {fA(x) = ‖A ( x
1 ) ‖−

n
p |A an n× n matrix, detA = 1}

is closed in Lp and kf belongs to this set we have shown that all optimisers
have the form prescribed in the theorem.
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Let us now see that all functions of the prescribed form are optimisers.
It is clear that we can take ci = 1. Let us therefore again take fA(x) =

‖A ( x
1 ) ‖−

n
p . Then it is enough to show that ‖fA‖p = ‖fI‖p and

Λα(fA, . . . , fA) = Λα(fI , . . . , fI)

where I is the n × n identity matrix because we know that (fI)
n
i=1 is an

optimiser. To prove the equality we note first of all that Λα(f1, . . . , fn) is
invariant under the transformation (f1, . . . , fn) 7→ (f1(M ·+ b), . . . , fn(M ·+
b)) where as before M is an (n − 1) × (n − 1) matrix with determinant 1
and b ∈ R

n−1. We note also that these transformations preserve the Lp-
norm of the functions. By using this invariance we may make the additional

assumption that A has the form
(

d1 0
0 d2

2I

)
with positive scalars d1 and d2

where I denotes the identity matrix of size n − 1. Since we have that
detA = 1 we get the relation d1(d2)

2(n−1) = detA = 1.
So we want to consider Λα(fA, . . . , fA) which equals

∫
((

1

d
2(n−1)
2

+ ‖d2x1‖2

)
. . .

(
1

d
2(n−1)
2

+ ‖d2xn‖2

))− n
2p

∣∣( 1 ... 1
x1 ... xn

)∣∣α dx1 . . . dxn.

We make the change of variables dn
2xi = yi. Then d

n(n−1)
2 dxi = dyi and

det

(
1 . . . 1
y1 . . . yn

)
= d

n(n−1)
2 det

(
1 . . . 1
x1 . . . xn

)
.

We thus get

Λα(fA, . . . , fA) =

∫
(

1

d
2n(n−1)
2

)− n
2p (

(1 + ‖y1‖2) . . . (1 + ‖yn‖2)
)− n

2p

d
−n(n−1)α
2

∣∣det
(

1 ... 1
y1 ... yn

)∣∣α
dy1 . . . dyn

d
n2(n−1)
2

= d
(n−1)

“
n2

p
−n2+nα

”

2 Λα(fI , . . . , fI).

Now note that n2

p −n2 +nα = n2(1− α
n )−n2 +nα = 0 so that we have the

desired equality of the forms.
Finally, we calculate

‖fA‖p =

∫

Rn−1

(
1

d
2(n−1)
2

+ ‖d2x‖2

)−n
2

dx

=

∫

Rn−1

(
1 + ‖dn

2x‖2
)−n

2 d
n(n−1)
2 dx = ‖fI‖p

where we have used the same change of variables as above. This completes
the proof. �
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Let us now examine the form ΛS,α defined in (12). We have for any
functions Fi defined on Sn−1 that

ΛS,α(F1, . . . , Fn) =

∫

(Sn−1
+ )n

F̃1(s1) . . . F̃n(sn)

|det(s1 . . . sn)|α ds1 . . . dsn =: Λ̃S,α(F̃1, . . . , F̃n)

where F̃i(si) = Fi(si) + Fi(s̄i) and s̄i is the antipodal point of si.
We note from the preceding proof that (f1, . . . , fn) is an optimiser for

Λα if and only if (F̃1, . . . , F̃n) is an optimiser for Λ̃S,α where fi and F̃i are

related by (48). Furthermore, for any s = (s1, . . . , sn) ∈ Sn−1
+ we have

that S−1(s) = s/sn and |JS−1(s)| = s−n
n by the same calculation as in the

previous section so if fi has the form fi(x) = ci‖A ( x
1 ) ‖−

n
p as in (21) then

the corresponding F̃i has the form F̃i(s) = ci‖As‖−
n
p .

Finally, we note that since p > 1 then

‖F̃i(s)‖Lp(Sn−1
+ ) = ‖Fi(s) + Fi(s̄)‖Lp(Sn−1

+ ) ≤ 2
1− 1

p ‖Fi(s)‖Lp(Sn−1)

and there is equality here if and only if F (s) = F (s̄) for almost all s ∈ Sn−1.
Thus we can state the analogue of Theorem 8 for ΛS,α as follows.

Theorem 21. The n-tuple of constant functions is an optimiser for the

operator ΛS,α and the tuple (F1, . . . , Fn) of non-negative functions is an op-

timiser for ΛS,α if and only if there exists an n×n matrix A with determinant

1 and ci ≥ 0 for 1 ≤ i ≤ n such that

(66) Fi(s) = ci‖As‖−
n
p for each 1 ≤ i ≤ n.

For ΛH,α similar reasoning gives.

Theorem 22. The tuple (F1, . . . , Fn) of non-negative functions is an opti-

miser for ΛH,α if and only if there exists an n×n matrix A with determinant

1 and ci ≥ 0 for 1 ≤ i ≤ n such that

(67) Fi(s) = ci‖As‖−
n
p for each 1 ≤ i ≤ n.

Note that ‖As‖ denotes the Euclidean norm of As viewed as an element
of R

n.

3.1. Inequality (23). Provided that the integrability conditions are satis-
fied, it is easy to see that the only modifications we need to make to the
argument above in order for it to apply to (23) are in Lemma 18 which is
not general enough to apply to this case.

We generalise it as follows

Lemma 23. Assume that f1, . . . , fN and g1, . . . , gs are non-negative func-

tions on R
n and that g1, . . . , gs are symmetric decreasing. Define

I(f1, . . . , fN ; g1, . . . , gs) =

∫

(Rn)N

N∏

k=1

fk(xk)
s∏

i=1

gi

(
N∑

k=1

bikxk

)
dx1 · · · dxN .
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Then

(68) I(f1, . . . , fN ; g1, . . . , gs) ≤ I(f∗1 , . . . , f
∗
N ; g1, . . . , gs)

and if each gσ is strictly symmetric decreasing and if for each k there exists

an i such that bik 6= 0 then there is equality here if and only if there exist

vectors a1, . . . , aN ∈ R
n such that

N∑

k=1

bikak = 0

for all i = 1, . . . , s and fk(xk) = f∗k (xk − ak) for all k = 1, . . . , N .

Note that inequality (68) is just a special case of the Brascamp–Lieb–
Luttinger inequality but what is new here is the determination of the cases
of equality.

Outline of proof. By writing

fk(xk) =

∫ ∞

0
χ{fk>tk}(xk) dtk

we may assume that each fk = χAk
is the characteristic function of an open

bounded interval. We are assuming we have equality in (68) which means
that

I(χA1 , . . . , χAN
; g1, . . . , gs) = I(χA∗

1
, . . . , χA∗

N
; g1, . . . , gs).

If we decompose

gi = gi1 + gi2 = (gi − δ)χ{gi>δ} + (giχ{gi≤δ} + δχ{gi>δ})

then both constituents of this sum are symmetric decreasing so that inequal-
ity (68) holds with gi replaced by either constituent.

Thus, in order for equality to hold in (68) there must be equality when
we replace g2, . . . , gs with g22, . . . , gs2. By choosing δ small enough, we may
assume that if xk ∈ Ak then gi(

∑
k bikxk) > δ for all i. This means that for

i > 1, gi2 is constant whenever xk ∈ Ak so we get

I(χA1 , . . . , χAN
; g1, g22, . . . , gs2)

= δs−1

∫

(Rn)N

m∏

k=1

fk(xk)g1

(
m∑

k=1

bikxk

)
dx1 · · · dxm.

and Lemma 18 applies to this case to give us that for every k such that
b1k 6= 0 then there exists a vector ak ∈ R

n such that
∑

k b1kak = 0 and
fk(xk) = f∗k (xk − ak).

The result follows. �

With this lemma we may deduce as before that if

Λγ(f1, . . . , fN ) = Λγ(f∗j1 , . . . , f∗jN )

then we must have fk(xk) = f∗jk (xk − akej) where the ak’s satisfy a system
of equations of the same form as equation (64) where the column indices
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in each equation are those of some P ∈ P. Then, given that Iγ cannot
be factorised, we get the same conclusion as before, namely, that all points
(xk̂, ak) lie in some (n− 2)-dimensional hyperplane.

The rest of the argument carries through unmodified.
Finally, let us show why conditions (26) are necessary and sufficient for

the kernel of (25) to be locally integrable. The condition α < 1 is necessary,

since det
(

1 1 1
x y z

)−1
is not locally integrable. (It is the kernel of the singular

integral operator we studied in Section 2 in the case n = 3.)
If α+β+ γ+ δ ≥ 2 then let us consider the integral of the kernel when x

lies in a small ball around the origin and the other variables lie in the first
quadrant, in a thin annulus of radius one, centred at the origin. Then we
note that the triangle whose vertices are y, z and w is covered by the other
triangles whose areas appear in the kernel. So assume to begin with that
δ = 0. Let y = x+ r1θ1, z = x+ r2θ2 and w = x+ r3θ3. Then

∫

E

dxdy dz dw
∣∣det

(
1 1 1
x y z

)∣∣α ∣∣det
(

1 1 1
x y w

)∣∣β |det ( 1 1 1
x z w )|γ

=C

∫

E

r1r2r3 dr1 dr2 dr3 dθ1 dθ2 dθ3

rα+β
1 rα+γ

2 rβ+γ
3 | sin(θ1 − θ2)|α| sin(θ1 − θ3)|β | sin(θ2 − θ3)|γ

.

If we further restrict attention to the set where the triangles formed by x and
two of the other three variables are all comparable in size, which follows from
assuming that θ1 = φ1+θ3 and θ2 = φ2+θ3 where (φ1, φ2) = (φ cos η, φ sin η)
and −π

6 > η > −π
3 then we can estimate this integral from below by a

multiple of

∫

E′

dφ1 dφ2

|φ1 − φ2|α|φ1|β|φ2|γ
> C

∫
φ

φα+β+γ
dφdη

and this is finite only if α+ β + γ < 2.
Note that the singularity occurred in a region where the triangle formed

by y, z and w is smaller than (a fixed multiple of) of any of the other
triangles formed. Therefore, if we had had the full kernel, with δ non-zero,
then we would have had the result that the integral could be finite only if
α+ β + γ + δ > 2.

To prove the sufficiency of the conditions, we see that by convexity,
Hölder’s inequality and symmetry it is enough to establish that the ker-
nel is bounded in the case γ = δ = 0, α, β < 1. In this case, the substitution
y = x+ r1θ1, z = x+ r2θ2 and w = x+ r3θ3 gives the integral

∫

E

r1r2r3 dr1 dr2 dr3 dθ1 dθ2 dθ3

rα+β
1 rα

2 r
β
3 | sin(θ1 − θ2)|α| sin(θ1 − θ3)|β

and this is clearly bounded.
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