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Animal personality has been shown to be influenced by both genetic and
environmental factors and shaped by natural selection. Currently, little is
known about mechanisms influencing the development of personality traits.
This study examines the extent to which personality development is geneti-
cally influenced and/or environmentally responsive (plastic). We also
investigated the role of evolutionary history, assessing whether personality
traits could be canalized along a genetic and ecological divergence gradient.
We tested the plastic potential of boldness in juveniles of five Icelandic
Arctic charr morphs (Salvelinus alpinus), including two pairs of sympatric
morphs, displaying various degrees of genetic and ecological divergence
from the ancestral anadromous charr, split between treatments mimicking
benthic versus pelagic feeding modalities. We show that differences in
mean boldness are mostly affected by genetics. While the benthic treatment
led to bolder individuals overall, the environmental effect was rather weak,
suggesting that boldness lies under strong genetic influence with reduced
plastic potential. Finally, we found hints of differences by morphs in boldness
canalization through reduced variance and plasticity, and higher consistency
in boldness within morphs. These findings provide new insights on how
behavioural development may impact adaptive diversification.

1. Introduction

Animal personality is defined as among-individual behavioural differences that
are consistent across time and/or contexts [1,2]. Variation in personality traits
within populations has been shown to be subjected to natural selection due to
ecological conditions [3], with heritability estimated between 0.32 [1] and 0.52
[4] in various species. Personality can also be plastic, as individuals’ behaviour
can respond to environmental factors, while remaining consistent among indi-
viduals (e.g. the most active individual being less active around predators, but
still being the most active relative to other individuals [5]). Such behavioural
plasticity may influence biological diversification and speciation [6]. Indeed,
phylogenetic clades with greater behavioural plasticity display higher species
richness [7,8]. Several theoretical models suggest how different personality
traits appear and coexist among individuals within and between populations
(reviewed in [9,10]): personality differences could arise from individual differ-
ences in life-history strategies [11], from individual differences in state that can
be either directly due to heterogeneous environmental factors or indirectly due
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to differences in parental contributions [12], or even from sto-
chastic chaos dynamics [13,14]. Those personality differences
could be further maintained if they lead to similar fitness
pay-offs or through frequency-dependent selection [15].
Stamps & Groothuis [16] posited that variations in personality
could be at the origin of differential niche-picking or niche con-
struction between individuals (see also [10]), leading to
separation of personalities into sympatric distinct niches for
which they are more fitted, which we hypothesize promotes
sympatric divergence between personalities within species.

Comparative study of personality variations between
species, or between populations occupying different niches
within a species, can allow identification of ecological factors
driving the evolution of personality. Nevertheless, some pit-
falls may hamper the use of this approach: intrinsic
interspecies differences in behaviour, and geographical con-
founding effect as ecological conditions differ between sites.
In this project, we aimed at partly bypassing those issues
by using different morphs of the same species, the Arctic
charr (Salvelinus alpinus), a fish of the Salmonid family
found in sympatry in Icelandic freshwater lakes and rivers.
In order to simultaneously disentangle genetic and environ-
mental effects on the development of personality, these
morphs were raised in a common garden design where a
key environmental variable was manipulated: benthic
versus pelagic modality of food distribution.

In many freshwater fishes, utilization of benthic versus
pelagic habitats has driven ecological specialization and evol-
utionary divergence within species, leading to the repeated
evolution of coexisting sympatric ecomorphs within lakes
[17-19]. This high evolvability is believed to be due to a
high plastic potential, notably in morphology of feeding
apparatus structures linked with different diets [20]. Such
plastic changes are suspected to be initiated by behavioural
differences [21]. As behaviour is the most immediate adaptive
mechanism available for animals against environmental
change [22-26], Wilson & McLaughlin [27] posited that
studying populations exhibiting behavioural divergence, yet
low morphological divergence, is relevant to understand
the initial stages of resource polymorphism [28].

In Iceland, Arctic charr morphs tend to be either benthic, i.e.
feeding on the bottom with stocky dark-brown bodies and
subterminal lower jaw seemingly adapted to benthic prey
exploitation, or pelagic, i.e. feeding in the water column with
fusiform silvery bodies and pointy snouts with terminal
mouth seemingly adapted to plankton filtration or even to
piscivory [29-31]. The morphs studied here (electronic sup-
plementary material, figure S1) display various degrees of
genetic, ecological and morphological divergence in the
wild, due to partial reproductive isolation and differential
niche-use in lakes [29,32,33]. The large benthic (LB, benthic)
and the planktivorous (PL, pelagic) sympatric morphs from
Lake Pingvallavatn are an extreme example of such
divergence, with obvious morphological differences, distinct
specialized diets and spatio-temporally separated reproduction
[30-32,34-36]. The brown (VB) and the silver (VS) sympatric
morphs from Lake Vatnshlidarvatn display more subtle mor-
phological and ecological differences: while VB are closer to
the previous description of a benthic morph and VS are
closer to the description of a pelagic morph, morphological
divergence is not as pronounced as between LB and PL [37].

These morphs are thought to descend from the same ances-
tral population [38,39], this ancestor probably represented

contemporarily by extant anadromous populations retaining
higher genetic diversity [37]. Ancestral Arctic charr were land-
locked in lakes formed at different geological times after the
last glaciation. Although the specific events during coloniza-
tion and early divergence are unknown, it is assumed that
the time since separation from the ancestral population trans-
lates into a gradient of evolutionary divergence from the
common ancestor between Arctic charr populations through-
out Iceland [37,40]. Although broader sampling and more
genetic data are needed to estimate the origin and history of
each population, we use the monomorphic anadromous popu-
lation in Flj6tad River (AN) to represent the putative ancestral
form, sympatric VS and VB morphs from Lake Vatnshlidar-
vatn as moderately diverged from the ancestor (landlocked
6000-8000 years ago [41]), and sympatric LB and PL morphs
from Lake Pingvallavatn as highly diverged forms (landlocked
approx. 10000 years ago [42]). Consistently, genetic analyses
show strong genetic divergence between Lake Pingvallavatn
sympatric morphs (LB and PL, in advanced divergence
state), but weaker genetic separation between Lake Vatnsh-
lidarvatn sympatric morphs (VB and VS, in early state of
divergence) [29,33,37,43,44].

Developmental plasticity is the property of a given geno-
type to produce different phenotypes depending on the
environmental conditions under which development takes
place [45], observed as differences in means by conditions
(reaction norms). Canalization refers to the capacity of organ-
isms to produce standard phenotypes despite genetic and
environmental perturbations, reducing variance around reac-
tion norms [46,47]. Diet treatment where the same food
items are either provided as floating (pelagic) or on the
bottom (benthic) has been shown to elicit plastic response in
growth, body shape and craniofacial/skeletal features in the
Arctic charr morphs studied here [20,48-50]. The data suggest
differences in morphological plasticity, where morphs from
Lake Pingvallavatn (LB and PL, more diverged) were less
plastic over ontogeny with a more canalized development
than morphs from Lake Vatnshlidarvatn (VS and VB, moder-
ately diverged), and where LB and VB morphs were more
morphologically canalized than their respective sympatric
counterparts [49,50]. The ‘plasticity-first hypothesis’ states
that ancestral phenotypic plasticity induced by environmental
perturbations leads to developmental reorganization and
uncovers cryptic genetic variation, producing novel trait
variants on which selection can act, and that undergo pheno-
typic accommodation and ultimately genetic accommodation
[51]. In this sense, genetic fixation of new behavioural accom-
modations acquired through ancestral behavioural plasticity
and decanalization when the environment changes or when
invading a new environment, ie. Baldwin effect [22,52,53],
could allow individuals to survive until genetic assimilation
[54]. The costs of maintaining behavioural plasticity could
then be reduced over evolutionary time, when the optimal
behavioural trait value for the new conditions has been
reached, by genetically fixing and canalizing this phenotype
in the population. To our knowledge, whether this mechanism
could be happening concerning personality traits has not
been addressed.

In the present study, we examined what roles genotype,
plasticity and canalization play in the development of person-
ality in the Arctic charr. We focused on a widely studied aspect
of animal personality, boldness—the individual propensity to
take risks [1]—that has recently been reported in the Arctic
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charr [55-57]. We hypothesized that (a) differences in ecologi-
cal backgrounds lead to the evolution of different personality
profiles between morphs (genotype), (b) the early environment
influences the developmental trajectories of personality traits
(developmental plasticity of personality) within morphs, and
(c) the degree of evolutionary divergence influences the
degree of developmental plasticity of personality and the mag-
nitude of personality range between morphs, potentially via
canalization.

To address this, juvenile full sibs of AN, VS, VB, LB and
PL morphs were reared in common garden in benthic versus
pelagic feeding modality treatments. We tested for differ-
ences in boldness repeatability, averages and variances
across morphs and treatments to characterize personality pro-
files. If personality development is under genetic influence
(a), we expected mean boldness to be morph-specific, or at
least population-specific (between lakes/rivers). If personal-
ity development responds to environmental conditions, i.e.
is plastic (b), we expected differences in mean boldness
between treatments, either overall or within morphs. If a
longer time since divergence leads to canalization of person-
ality traits (c), we expected reduced plasticity, lower variance
and higher consistency in boldness in more diverged morphs.
Note that these predictions are not mutually exclusive. To our
knowledge, this study is the first empirical attempt to simul-
taneously assess the role of evolutionary history, genetic and
environmental influences, and in particular the influence of
feeding modalities, in shaping personality during early life.

2. Material and methods

(a) Biological material

This study used offspring of wild-caught Arctic charr morphs: AN
from Fljétad River; VS and VB sympatric morphs from Lake
Vatnshlidarvatn; LB and PL sympatric morphs from Lake Pingval-
lavatn. For each morph, three male and three female wild adults
were captured with gill nets or electrofishing during spawning
season: AN on the 22 October 2018 (65.999641°, —19.004670°);
VS on the 17 September 2018 (65.510907°, —19.666710°); VB on
the 3 September 2018 (65.516883°, —19.612980°); LB on the 9
August 2018 (64.234195°, —21.047049°); PL from 7 October 2018
to 14 October 2018 (64.190976°, —21.093420°). Each fish was
stripped of gametes, and pure crosses were made on site, creating
three families within each morph. Eggs from each family were
kept separated and raised in common garden. Incubation con-
ditions were complete darkness at 4.3+0.14°C, pH 7.3+0.15,
dissolved O, saturation 101.4 + 1.8% and eggs were checked daily.

(b) Housing conditions

One week before anticipated hatching date, families were trans-
ferred to separate 201 cylindrical tanks (water renewal kept
above 200% per hour (40-50 1 h™") to maintain oxygen saturation;
12h/12 h light/dark photoperiod at 80 lux). Fish were fed
ground commercial aquaculture start food (INICO 0.4 mm)
three times a day. Before first feeding, the water temperature was
maintained at 4.0 + 0.3°C matching Pingvallavatn spawning beds
temperatures [58], then progressively increased to 7.6 +1.1°C
between 50 and 90 degree days (daily temperature x age in
days) after first feeding to match more typical groundwater
temperatures [58] and to increase growth rates during feeding
treatment. At 1226.3 +20.7 degree days after hatching, individ-
uals within families were individually tagged with Visible
Implants Elastomer (VIE, Northwest Marine Technology, 2008),
and half was randomly assigned to a benthic feeding treatment,

the other half to a pelagic feeding treatment (see next paragraph).
Hence, we had 10 different batches (5 morphs x 2 treatments).
Specificities regarding number of tank replicates, fish density
and families” distribution over replicate tanks are detailed in
electronic supplementary material, table S1.

() Feeding treatments

Feeding treatments, following Parsons et al. [49,50], started 16 days
after tagging and lasted for 120 days. Fish from both treatments
received the same food quantity (4% of overall biomass) and qual-
ity: from day 1 to day 30, they received a 60:40% mixture,
respectively, of INICO commercial aquaculture pellets (to ensure
complete nutrition) and bloodworms (to expose individuals to a
prey item foraged by juveniles in the wild), then a 50 : 50% mixture
from day 31 to day 120. Pellets were distributed manually five
times a day and bloodworms once a day. Pellet granulometry
was 0.8 mm from day 1 to day 60, and 1.1 mm from day 61 to
day 120, to adapt to fish growth. Only the distribution modality
differed between treatments, mimicking prey shape and accessibil-
ity in natural habitats. In the benthic treatment, food was
accessible exclusively at the bottom of the tank: whole pellets
were distributed through a funnel and whole bloodworms were
distributed in a food trap placed at the bottom to encourage scrap-
ping of food from the substrate like benthic-feeders would in the
wild. In the pelagic treatment, ground pellets and chopped blood-
worms were spread evenly at the water surface and distributed
homogeneously through the water column with water flow. A
mesh placed 2-3 cm above the bottom of pelagic tanks prevented
benthic feeding, forcing the fish to catch or filter drifting items like
pelagic-feeders would.

(d) Open field test

After the completion of the feeding experiment on day 120, and
throughout the behavioural testing, fish were maintained on pel-
lets only, using the same distribution modality as the feeding
experiment. Bloodworms were no longer provided because be-
havioural testing would take entire days, and provisioning
bloodworms only once a day, as during the feeding experiment,
could bias behaviour between fish that had access to it prior to
being tested and fish that had not. After 3 days of adjustment
to this diet, at day 124, 18 individually tagged fish per family
per batch, equally distributed across replicate tanks (AN, LB: 6
individuals per replicate; PL, VB, VS: 9 individuals per replicate
to compensate for lesser replicate tanks per family, see electronic
supplementary material, table S1 for details), were chosen to be
submitted twice to an open field test (OFT) with shelter, with a
7-day interval between each replication, to assess boldness per-
sonality trait (18 individuals x 3 families = 54 fish per batch, i.e.
108 fish per morph, i.e. N =540, electronic supplementary
material, table S1). These fish were semi-randomly chosen in
order to cover a size gradient to account for possible influence
of body size on behaviour [59] as notable size variations existed
between and within replicate tanks, morphs and families. Indi-
viduals from each family within each tank were divided in
three size classes, small, medium and large, corresponding,
respectively, to the first, second and third quantiles of the body
size distribution of family within tank. Two fish per size class
were picked at random for each family and tank. For technical
reasons, the test started on day 131 instead of day 124 for the
AN. All morphs started OFT trials at 276-292 days old from
hatching, well before maturity. The OFT arena [55] consisted of
an opaque white rectangle tank (39.7 x 29.5 x 25 cm) filled with
6 cm water depth at home tanks’ temperature, with a shelter in
a corner (14 x 6 x 6 cm) provided with a removable door. The
set-up was placed on a white LED backlight (Noldus Information
Technology) set at 70 lux to increase contrast. A Basler Ace
acA1920-150um camera placed 110 cm above the arena recorded
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each test at 30 frames per second. At the beginning of the test, the
fish was placed in the closed shelter. After a 5 min acclimation, the
shelter door was opened, and the fish was free to explore the arena
for 20 min. Once the 20 min were completed, the fish was gently
netted, anaesthetized in a 300 ppm phenoxyethanol solution,
weighed, and fork length and total length were measured.
Water in the arena was replaced between each trial.

(€) Boldness score assessment

The fish were tracked from the obtained videos with Ethovision
XT v. 14 (Noldus Information Technology). The arena was
divided into four virtual zones: the shelter zone covering the
shelter area, overlapping with an entry zone extended 3 cm
from the shelter door; the border zone corresponding to a
buffer of 3.5 cm along the edges of the arena; the centre zone
being the remaining part of the arena and corresponding to the
riskiest area since thigmotaxis (tendency to remain close to the
enclosure walls) is commonly associated with shyness [60,61].
The fish barycentre was used to calculate the latency to first
exit the shelter (s), frequency of visits in each zone, cumulative
time spent in each zone (duration, s), mean velocity (corrected
by body length, s™'), absolute angular velocity (degreess™)
and the total distance travelled (cm). If an individual did not
exit the shelter (head and trunk not visible) after 20 min in
either replication, it was considered not to have responded
to the test and was excluded from the subsequent principal
component analysis (PCA) (justification in electronic supplemen-
tary material, figure S2). Eventually, a total of N=463 fish
were included in the PCA analyses (details in electronic
supplementary material, table S1).

We can consider that the first OFT replication is the most
accurate assessment of boldness, as all individuals are com-
pletely naive to the test at that point [57,62]. Hence, we
reduced all behavioural variables recorded during the first OFT
replication into a primary axis of behavioural variation with a
PCA, removing variables showing high correlation with others
on the factor map. We retained total distance travelled, absolute
angular velocity, entry frequency and shelter, centre and entry
durations. The first axis of this PCA (PC1) explained 58.0% of
the variance in the data, to which the variables with strongest
contributions were total distance travelled, shelter duration
and entry frequency (respective PC1 loadings: 0.941, —0.935
and 0.839; see electronic supplementary material, figure 52 and
accompanying R script [63]). Consequently, PC1 represents a gra-
dient from shyest (negative values) to boldest individuals
(positive values), as high PC1 coordinates indicate that the fish
explored the arena instead of spending time in the shelter and
re-entered the entry zone numerous times. We then used this
PCA as a template applied to the whole dataset. Each individual
was hence assigned a boldness score for each replication, corre-
sponding to its coordinate on PC1, the boldness scores at the
second OFT replication being predicted based on the PCA par-
ameters calculated with the first replication, consequently
taking repeated measures into account while conserving the
multiple-behaviours complexity of risk-taking.

(f) Statistical analyses

As time spent in the shelter was a major component of shyness in
the PCA, we considered the proportion of non-responding fish—
technically spending the maximum time in the shelter—as a
complementary group-level indicator of boldness. The pro-
portion of non-responding individuals was compared between
morphs, treatments and batches with y*-tests. All other statistics
were performed with R v. 4.3.0 software [64] and are provided
in the R script accompanying this article [63]. Mean boldness
score and proportion of non-responding individuals were com-
pared between morphs to investigate the genetic influence on

the development of personality, and between treatments and
batches to investigate boldness plasticity. Boldness score
repeatability (i.e. consistency) and variances were compared
between morphs to assess differences in canalization of boldness.
We partitioned the total variance in boldness into among- and
within-individual variances for each morph. Among-individual
variance (Vamong) represents the group-level variance in bold-
ness, i.e. how much individuals behaved differently from
each other across replications. Within-individual variance
(Vwithin) Tepresents the variance in boldness at the data level,
i.e. how much an individual behaved differently from itself
across replications.

(i) Mean boldness scores

We fitted a linear mixed model predicting z-scaled boldness
score in the Bayesian language Stan [65] using the brms package
v. 2.19.0 [66]. The model (referred to as model.0, details in accom-
panying R script [63]), included morph, treatment, their
interaction, z-scaled total length of the fish and OFT replication
as fixed predictors. Random factors included individual ID,
family, tank, time-category (as OFT tests were run over entire
days, we attributed a time-category to each trial according to
running slots to control for potential differences in diel activity)
and date (as one OFT replication would last for 6 days per
morph, to account for possible stress accumulation over days).
Diagnostics of model.0 were validated by inspecting potential
scale reduction factors, effective sample sizes, tails heaviness
and lightness, trace plots, densities, autocorrelation plots and
trace rank plots for each model parameter. We also verified the
robustness of the results by running model.0 again using several
different seeds.

We calculated marginal (R2m), conditional (R2c) and inclus-
ive (IR2) R*values for model.0, describing the amount of
variance in boldness scores explained by the fixed predictors,
the whole model and each predictor, respectively (method
adapted from [67], details in accompanying R script [63]). We
applied the functions emmeans and contrast (package emmeans
v. 1.7.8 [68]) under Tukey linear hypothesis to model.0, to
perform pairwise post hoc comparisons of boldness scores
between morphs and between treatments within morphs.

(ii) Boldness repeatability, among- and within-individual

variances
Boldness repeatability (R) evaluates the proportion of the total
variance that is due to among-individual variance in boldness
[4], corresponding to the behavioural consistency at the group
level over replications. In other words,

Vamong Vamong

" ‘total variance (Vamong + Vwithin)

On the one hand, we extracted the posterior samples
corresponding to the standard deviations for the ID random pre-
dictor and the residuals of model.0, squared them to obtain
Vamong and Viimin, respectively, which we used to calculate
R. On the other hand, we calculated those three variables for
each morph and compared them statistically by following the
method proposed by Royauté & Dochtermann [69], fitting a
multi-level structure brms model (model.morph), with boldness
score as the response variable, the morph as fixed predictor,
random effects for both the intercept and the morph-related
effect, which were nested within the individual IDs, allowing
capture of Vamong per morph, and finally a sigma term account-
ing for potential variations in the residual standard deviation
among morphs, capturing V.min per morph (details in accompa-
nying R script [63]). Diagnostics of model.morph were produced
as described in the previous paragraph.
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Still using Royauté & Dochtermann’s guidelines [69], we
examined pairwise differences in the posterior distributions of
Vamongs Vwithin and R between morphs (AVamong, A4Vwithin and
AR, respectively). All estimates are medians of posterior distri-
butions with their 95% credible interval (CI), along with
probability of direction (PD), indicating the proportion of samples
that are of the estimate’s sign, i.e. roughly the probability that
the estimate is different from zero. We also calculated the effect
sizes for each pairwise comparison to estimate the amplitudes of
AVamongs AV within and AR between morphs, by calculating the
probability of superiority between the posterior distributions of
each parameter for each pair of morphs (A statistic [70], package
RProbSup v. 3.0 [71]). Finally, we tested whether model.morph
detected the correct pattern of differences in variance components
among morphs [69], by comparing models similar to model.-
morph, allowing (m1) neither Vimong NOT Viithins (M2) Vamong
only, (m3) Vyithin Only or (m4) both Vamong and Viithin, to vary
by morph (details in accompanying R script [63]).

Note: as a side investigation, we also compared Vamong,
Vwithin and R between treatments within morphs to test the gen-
otype-by-environment influence on the emergence of personality
(see accompanying R script [63]). Results are presented and
discussed in electronic supplementary material, table S2.

Note: Bayesian statistics do not use frequentist p-values. The
significance of an estimate is obtained when its CI or its highest
posterior density interval (HPDI) does not overlap zero. We con-
sidered a tendency for an estimate when the CI or HPDI
overlapped zero no further than 0.09 units with a PD>0.92.
Regarding the A statistic, we considered a large effect when A
€ [0.00;0.10] n [0.90;1.00], a small effect when A € [0.11;0.20] n
[0.80;0.89], and a negligible effect otherwise.

3. Results

(a) Mean boldness score

The morph had significant impact on boldness score, the post
hoc test highlighting gradual increase in mean boldness
along the divergence gradient (with AN as a reference: AN =
VS<VB<LB<PL) with a tendency for the PL to have a
higher mean boldness than LB and VB morphs (table 1 and
figure 1a). The treatment itself had no significant impact on
boldness score, but the morph-by-treatment interaction had a
slight effect within morphs (table 1), VS-benthic fish being sig-
nificantly bolder compared with VS-pelagic fish, with a similar
tendency within PL (table 1 and figure 1b). Larger fish were
also significantly bolder (table 1). Model.0 explained 62.0%
of the variance in the data (R2c), with 30.9% explained by the
fixed effects (R2m). Further examination of R*values
(table 1) indicated that the morph explained the vast majority
of the variance (26.8%) while the morph-by-treatment inter-
action and the total length had a minute impact (0.7% and
0.5%, respectively). Variation in boldness scores was similar
between families within a morph (visual inspection, see
electronic supplementary material, figure S3).

(b) Proportions of non-responding individuals

The proportions of non-responding fish (table 2) depended
on the morph (xz (4, N=536)=21.27, p<0.001), treatment
(x* (1, N=536)=4.73, p<0.05) and batch (y*> (9, N="536) =
28.18, p<0.001), and broadly followed the same pattern as
mean boldness scores: the more diverged the morph, the
bolder, with the fewest non-responding fish (except VB and
LB standing out of this pattern). With 6.5% more fish
coming out compared with the pelagic treatment, fish from

the benthic treatment appeared significantly bolder overall. [ 5 |

This was also the case within morphs, with the AN showing
the largest proportion difference between treatments, but
more marginally for the VB in which proportions were
almost equal between treatments.

(c) Boldness repeatability, Vmong and Vyyithin

The boldness score was repeatable over the whole dataset—
confirming (along with [55-57]) that boldness can be
considered a personality trait in the Arctic charr [1]—as
well as within each morph. A notable exception was the
AN (table 3). Interestingly, repeatability tended to increase
along the divergence gradient, with the AN and PL morphs
at the two extremes of the gradient showing a significant
difference (AN < (VS = VB = LB) < PL, table 3). The A statistics
revealed notable differences in repeatability in pairwise com-
parisons involving AN and PL morphs (table 3). Also, AN
had generally lower V,mong compared with the other
morphs, and when considering Vithin, AN and PL morphs
had similar values and were significantly less variable than
VS, VB and LB morphs, which were also similar to each
other (i.e. the general Vi pattern (AN =PL) <(VS=VB=
LB), table 3 and figure 1a). The A statistics revealed large
differences in pairwise comparisons of Vimong involving
AN, and the only negligible difference in Vitnin was between
LB and VS morphs (table 3). Out of the four models
compared, m4 was best supported, indicating that both
Vamong and Vi iwhin Varied by morph [69].

4. Discussion

(a) Boldness under strong genetic influence

The results show that the development of boldness in this
species is predominantly influenced by genetic background
and less so by the environment (feeding modality) (see also
[55,57]). We and previous studies found no differences in
mean boldness score between sympatric morphs (e.g. VS-
VB, LB-PL, SB-PL, [56,57]). This suggests that genetic differ-
ences between closely related sympatric morphs are too
subtle to engender detectable differences in boldness. How-
ever, PL and LB sympatric morphs, which are also more
genetically, ecologically and morphologically diverged from
each other than VB from VS, tended to differ in mean bold-
ness score (table 1 and figure 1a). This indicates genetic
influence on boldness may be more easily discovered in
more diverged populations between lakes and rivers and
suggests that differences in average boldness could widen
as sympatric morphs further diverge from each other.

An increase in boldness with the morph’s degree of diver-
gence from the common ancestor was observed (roughly,
AN <VS< VB <LB<PL; table 1 and figure 1a). Similar rank-
ing of boldness by morph was seen in independently reared
offspring (same morphs sampled three years prior in [57]; 1-2
years later in Dellinger et al. [72]). Such consistency within
morphs across years further suggests that boldness patterns
are heritable, with stable selective pressures maintaining
them in the wild. The boldness gradient among the five
morphs also appears to be consistent over social rearing
contexts, as individuals raised in isolation [57] responded
similarly to our individuals raised in high-density groups.
This corroborates previous studies showing no effect of
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Figure 1. Boldness scores across the five morphs of Arctic charr, from the least to the most diverged: AN from Flj6tad River, sympatric VS and VB from Vatnsh-
lidarvatn, and sympatric LB and PL from Pingvallavatn. (a) Boxplots of boldness scores for each morph: the rhombus represents the mean, grey dots are scattered
individual values, the central line indicates the median, ends of the boxes denote upper and lower quartiles, whiskers cover 95% of values. Significance levels from
Tukey post hoc pairwise comparisons of boldness scores between morphs, carried out on model.0: S, significant; T, tendency (see also table 1). (b) Reaction norms of
boldness scores across treatments (benthic and pelagic) for each morph: the dot represents the mean, vertical bars indicate 1 s.e., the slope of the line across
treatments indicates the direction and amplitude of boldness plasticity. The benthic fish were significantly bolder than the pelagic fish within the VS, and
tended to be within the PL (see also table 1).

Table 2. Proportion of non-responding individuals, i.e. fish that did not exit the OFT shelter after 20 min, per morph, per treatment and per batch (N =73 out

of 540 fish tested).

morph

all treatments considered

treatment all morphs considered
benthic 10.4%
pelagic 16.9%

direct early-life social exposure on mean personality trait
[13], or on repeatability of behaviour [73], unlike the highly
influential effect of social contexts on personality usually
described in other taxa [74]. All these observations constitute
even more clues in favour of a strong and heritable genetic
effect on Arctic charr boldness development.

(b) Boldness plasticity

The treatment engendered a plastic response in boldness,
with significantly fewer non-responding fish in the benthic
treatment compared with the pelagic treatment (table 2).
Although we did not detect this relationship between bold-
ness score and benthic treatment in the fish that responded
to the OFT, such a pattern can be perceived (figure 1b) as
all morphs except the VB show lower boldness scores in pela-
gic treatment (significant for VS, tendency for PL), the
morph-by-treatment interaction weakly but significantly
influencing boldness scores (table 1). If non-responding indi-
viduals could have been attributed a (most likely low)
boldness score (discussed in electronic supplementary
material, figure S2), one can imagine stronger boldness
score differences between treatments within morphs, hence

AN 'S /] LB

19.4% 13.0% 19.6% 15.1%

13.0% 9.3% 19.2% 10.9% 0.0%
25.9% 16.7% 20.0% 19.6% 1.9%

the detection of higher plasticity levels. This would be
especially apparent within the AN, showing a rather flat
boldness score reaction norm, but the largest difference in
proportions of non-responding fish, between treatments.
These elements considered parallelly indicate that the devel-
opment of boldness is plastic, and that the degree of plasticity
differs by genotypes. Higher boldness in benthic treatment
may be due to competitive access to localized food. Agonistic
behaviours towards conspecifics are well known in the Arctic
charr, with dominance typically established through a high
degree of aggressiveness by larger fish monopolizing access
to food [75]. A positive correlation between boldness and
dominance has already been demonstrated in salmonids
[76] which parallels our results showing a significant positive
effect of size on boldness. Hence, interindividual competition
in our benthic treatment may have fuelled higher levels of
boldness to fight for first access to the resource. Competition
was probably much lower in the pelagic treatment, where
food was equally accessible by all through the water
column. In this case, further work is necessary to assess
whether these observed behavioural patterns relate to devel-
opmental plasticity (long-term effect) or temporal plasticity
(or flexibility) in boldness [77].
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Two explanations could be mentioned for the overall low
plasticity level we found. Firstly, the treatment used may
not elicit strong plastic changes in this species, or was not
administered long enough. Exposure to the same feeding
modalities only elicited minimal plastic response in
morphological traits among these morphs [49]. Additionally,
environmental enrichment administered from hatching had
no detectable effect on boldness in an Arctic charr aquacul-
ture strain [55]. This suggests that weak plastic response
may not necessarily reflect insensibility to a particular treat-
ment, but rather a lack of environmental responsiveness of
boldness in the species. Secondly, environmental canalization
might have evolved rapidly, and only small amounts of
remaining plasticity are detectable, like Parsons et al. [49]
suggested about Arctic charr morphology.

If a longer time since divergence leads to canalization of per-
sonality traits, we expected reduced plasticity, overall lower
boldness variance and higher boldness consistency in more
diverged morphs. Following our predictions, boldness con-
sistency showed a tendency to increase with divergence
degree. A higher sample size and/or more numerous OFT
replications would most likely have turned this tendency
into significant increase [78], given the notable effect sizes
detected between morphs in terms of repeatability (table 3).
The ancestral proxy AN showed an extremely low repeatabil-
ity, which can be explained by this morph’s general
behaviour in the OFT: consistent with AN’s low mean bold-
ness score, almost all AN individuals actually spent most of
their time hiding in the shelter (median of 89% of the time,
for a dataset median of 56%). Therefore, AN’s low boldness
repeatability was not due to individuals not behaving consist-
ently over replications, but rather because they all behaved
the same [1]. AN also had significantly lower boldness var-
iance components. A current extremely canalized state of
boldness in the AN, as it is the morph with the longest adap-
tation time to its habitat, would explain the apparent lack of
boldness variability in this morph, despite their higher gen-
etic diversity [37]. Nevertheless, AN morph still showed
substantial plastic potential, as it had the largest difference
in percentage of non-responding fish between treatments.
The ‘plasticity-first hypothesis’ [51] suggests plasticity in
ancestral populations provides opportunity for adaptive
divergence when colonizing a new environment, describing
ancestral plasticity as a key for rapid evolution, predicted to
be reduced after acclimation to the new habitat. Our data
do not support this model [51], as (i) even though boldness
plasticity differed to some extent between morphs, submit-
ting our ancestral proxy to ‘derived’ conditions (treatments)
(i) did not trigger the expression of boldness levels found
in diverged morphs and (iii) did not uncover ancestral cryptic
genetic variation as boldness variance components in the AN
were among the lowest. However, it is worth noting that in
another study in which no differential treatments were
applied to the same morphs [57], the AN was (i) the only
morph showing temporal plasticity in boldness over multiple
OFT replications, with a boldness score increasing and ulti-
mately reaching both (ii) a boldness mean equivalent to the
most diverged morphs and (iii) boldness variance equivalent
to the most variable morph.

The data may fit better with a scenario where mean, plas-
ticity and variances of a trait can evolve independently (e.g.
[79]). In this view, the trait is canalized in the ancestral
environment, and a transient boost in plasticity and its poten-
tial further maintenance after drastic environmental change is
contingent on multiple factors, such as the difference in
mean, variance and predictability of the new environmental
conditions for instance. Independent evolution of boldness
mean, plasticity, variances and consistency could explain dis-
crepancies in boldness components observed here between
sympatric morphs.

The trend for increasing boldness repeatability with
divergence across morphs—that is, more pronounced person-
alities in more diverged morphs—suggests an initial
decanalization of boldness upon ancestral colonization, fol-
lowed by progressive recanalization of this trait over time
[80]. This is consistent with higher boldness variability
found in more recently diverged VS and VB, possibly repre-
senting a state of decanalization or weak canalization [49,50].
Also, the fact that AN and VS had the highest plasticity,
respectively, in proportions of non-responding fish (table 2)
and in boldness score reaction norm (figure 1b and table 1)
between treatments, also supports a possible boost in bold-
ness plasticity in colonizing ancestors. Indeed, the recently
diverged VS has retained numerous ancestral features: body
and head morphology, colorations, migration [41], resource
use [37] and even mean boldness (as seen here and in [57]),
hence probably also its seemingly high remnant plasticity.
The loss of plasticity in VB could be attributed to ecological
divergence among these sympatric morphs. VB specialize
on one prey-type and spend their whole life cycle within
the lake, while generalist VS alternate prey according to sea-
sonal abundance and migrate to adjacent streams to spawn
[37,41]. VS’s generalist lifestyle might promote plasticity per-
sistence to be able to juggle with those seasonal changes.
Highly diverged LB and PL both showed high consistency
and somewhat equal levels of plasticity, but differed in bold-
ness within-individual variance. Low variability and high
consistency in boldness in the PL is probably attributed to
narrow specialization in a ‘simple” open-water environment
where they shoal in small groups [34]. This probably favours
predictable and consistent behaviours for better coordination
necessary for shoal formation, hence a high degree of behav-
ioural canalization, also allowed by their longer divergence
time. PL residual degree of boldness plasticity (tendency,
table 1) might be maintained to allow for behavioural adjust-
ments to a pelagic lifestyle after ontogenetic shift from
spawning grounds. In contrast, its sympatric counterpart
LB dwells solitarily in a highly complex habitat amidst lava
rocks and crevasses [21] probably equally favouring the use
of multiple behavioural sub-niches (multiple behavioural
optima), leading to an array of coexisting consistent boldness
profiles: bold individuals actively defending territories, inter-
mediate fish searching for food in unoccupied spots, and shy
individuals hiding from predators/conspecifics between cre-
vasses. The higher within-individual variance in boldness
may additionally grant LB individuals the flexibility to
exploit those different behavioural sub-niches when needed
(e.g. a shy fish sometimes risking exiting its crevasse to find
food). Consequently, despite the common evolutionary his-
tory of Pingvallavatn morphs, major ecological differences
between them could explain the hampering of boldness
canalization towards a single boldness profile in the LB, as
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opposed to the highly canalized PL. In both sympatric pairs,
the more specialized morph tended to be bolder, consistent
with specialist lifestyle favouring plasticity loss and fixation
of inflexible behavioural routine often associated with
higher boldness [81].

Interestingly, boldness seems to follow a canalization
fashion similar to morphological canalization among these
morphs [49]. This hints towards potential genetic correlation
between these morphological and behavioural traits, hence
selection acting on personality traits could lead to correlated
changes in morphology [25,82,83]. However, LB was found to
be more morphologically canalized than PL [49] when we
found the contrary for boldness, suggesting that evolution
of canalization can be trait-specific. All in all, these interpret-
ations should be taken with caution, as this fully laboratory-
based design focuses on only one aspect of foraging, still far
from mimicking all potential selective and developmental
cues available in nature, and as expression of boldness in
the lab might not necessarily fully reflect natural behaviours.
An experimental design including more families would be
beneficial to confirm our conclusions.

5. Conclusion and implication for sympatric

diversification and adaptability

This study contributed to partly unveil the roles of genetic
influence, environmental responsiveness (developmental
plasticity) and evolutionary history in shaping boldness as
a personality trait. We showed that the level of boldness
was dependent mostly on genetic influence (morph-
dependent and heritable), little influenced by environmental
inputs (low plasticity). We also found clues of boldness
canalization by showing a tendency to greater boldness
consistency and a reduction in plasticity along the evolution-
ary gradient, and lower boldness variance in morphs
harbouring the longest evolutionary history in their habitat.
These findings suggest strong evolutionary implications for
species diversification, as change in behaviour is indeed the
first adaptive response of organisms facing environmental
changes [22-26]. Radical environmental changes (in this
case, from anadromous migration to lake residency) impose
behavioural shifts to cope with new environmental features.
Developmental plasticity in personality grants higher adapta-
bility via the potential to quickly reach new adaptive peaks
[84,85], by rapid formation of environmentally induced new
consistent behavioural phenotypes at the population level
[22,52,53]. In low productivity systems, lowering intra-
specific competition by exploiting different resources in the
new environment optimizes resource availability. Hence, per-
sonality shifts favouring the use of different resources,
parallelly create niche shifts as well [10,16]. Differential selec-
tive pressures in newly colonized niches can sort out these
environmentally induced personalities in potentially opposite
directions [6]. Eventually, the best-fitted personality patterns
selected for in respective niches might become fixed over
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