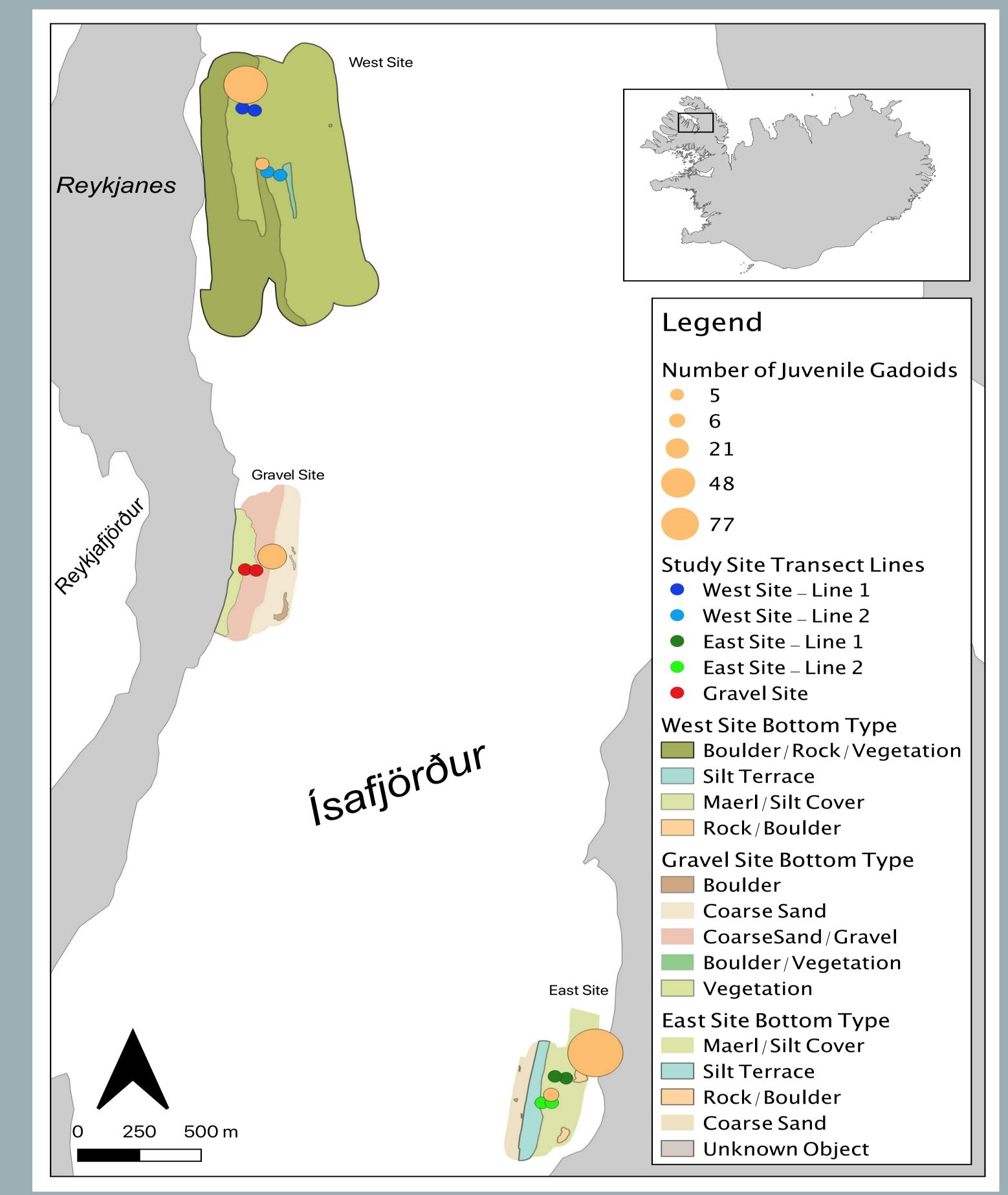
ASSESSING THE DEGREE OF MAERL HABITAT P13 FRAGMENTATION AFFECTING FISH SPECIES RICHNESS AND ABUNDANCE

Michelle Lorraine Valliant^{1,2,*}, Ragnar Edvardsson² & Guðbjörg Ásta Ólafsdóttir²

1. University Centre of the Westfjords, 400 Ísafjörður Iceland

2. University of Iceland, Research Centre of the Westfjords, Hafnargata 9b, 415 Bolungarvik, Iceland


INTRODUCTION

What Is Maerl?

- Calcified red algae, crust-like formation on beds of algal gravel, species based on level of calcification [6]
- Grows thousands of years at high densities from shoreline to 30m below sea level [6]

Why Is Maerl Important?

- Most juvenile gadoids depend on near shore areas (e.x. maerl habitat) during benthic settlement [8]
- Physical refuge & predation protection to support adult recruitment [8], [13]

• Juvenile commercial fish species seen in maerl habitats: Atlantic cod (Gadus Morhua), saithe (Pollachius

virens), and pollack (Pollachius pollachius) [8]

Maerl In Iceland

- Documented in Arnarfjörður & Hvammsfjörður but little information on distribution & abundance [4]
- 170 mill cubic m found in Ísafjarðardjúp & Jökulfirðir from geological survey in 2013 [11], [12]

Habitat Fragmentation

- Habitat loss & change in structure, cause edge effects to fish communities [7]
- Edges along exterior of habitat patch & increases with fragmented area [7]
 - Increase competition & predation

MAIN AIMS & RESEARCH QUESTION

- Main Aim: To assess fish inhabiting maerl beds in Iceland.
- Specifically, do juvenile gadoids use maerl as nursery grounds during benthic settlement and does maerl percent coverage and fragmentation affect abundance?

MATERIALS & METHODS

Study Site

• Fjord called Ísafjördur in Ísafjardardjúp, Iceland (Figure 1)

SCUBA Dive Survey & Side-Scan Sonar Protocol

- 2 maerl patches & 1 gravel site
 - 2 transect lines at the centres, 2 at the edges, & 1 gravel site line (50m length with 10m intervals)
 - Depths of 5m-20m, perpendicular from shore
- Total SCUBA dives = 30 with 2 divers from July to September of 2019
- Depth, habitat classification, and confirmation of maerl percent cover estimates determined from side-scan sonar system & using SCUBA observations as ground-truthing

Fish Abundance, Richness, & Maerl Percent Coverage

- Juvenile gadoid fish recorded
- Maerl recorded as vegetation, estimated % coverage recorded/10m interval, & not specified by species [9]
- Other estimated substrate % type: Coarse Sand, Cobble, Silt, Gravel, & Mud [2], [14]

<u>RESULTS</u>

TABLE 1(a) Overview of transect lines and data collection							
	Number of		Maerl %				
Site	dives	Depth (m)	cover	Fish total	Diving dates		
					15.7.2019-		

Figure 1. The amount of juvenile gadoid fish observed with bottom classification of the maerl patches and gravel site.

DISCUSSION

- Juvenile gadoids were found most frequent on maerl beds than the gravel site
- More fish seen on maerl edges than gravel site (Table 1b)
- Number of fish seen on maerl edges was less than maerl centers (Table 1a)
- Higher maerl cover did not correlate with more fish (Table 1b)
- Overall, results suggest edge effects
- 163 total fish counted
 - juvenile Atlantic cod (109 counted) and saithe (28 counted)
 - other species included: European flounder (Platichthys flesus) and rock gunnel (Pholis gunnellus)
- Maerl is protected in areas along the Atlantic and Mediterranean Sea [1], [10]
- EU Habitats Directive (92/43/EEC) classified *Lithothamnion corallioides* and *Phymatolithon calcareum* as threatened in the North-East Atlantic [11], [5]
- Little known of maerl distribution and associated biodiversity in North-Atlantic (ex. Current

East	Maerl center	6	7-14	50-100	81	26.9.2019
Еа						15.7.2019-
West	Maerl edge	6	7-11	25-75	6	26.9.2019
						9.7.2019-
	Maerl center	6	13-17	75-100	49	26.9.2019
						15.7.2019-
	Maerl edge	6	8-14	50-100	5	26.9.2019
						9.7.2019-
	Gravel	10	10-19	0-25	22	25.9.2019

TABLE 1(b) Results from GLMM on number of juveniles observed

		Estimate	Std. error	z-value	p-value
Intercept		-7.867	0.825	-9.532	<0.001
East	Maerl center	5.423	0.447	12.134	<0.001
	Maerl edge	4.517	0.717	6.303	<0.001
West	Maerl center	4.284	0.596	7.189	<0.001
	Maerl edge	3.875	0.719	5.396	<0.001
Depth		0.448	0.043	10.322	<0.001
Maerl % cover		-0.05	0.007	-6.936	<0.001

knowledge in Iceland mostly based from extraction sites) [1], [3]

Study adds information on maerl as fish nursery grounds and biota associated with maerl in Iceland

REFERENCES

[1] Birkett et al. (1998). Scottish Association for Marine Science, Oban, UK. 116 pages.
[2] Elliot et al. (2016). Journal of Fish Biology, 89(2), 1190–1207.
[3] Grall & Hall-Spencer (2003). Aquatic Conservation, 13(S1), S55-S64.
[4]Gunnarsson (1997). Þörungar á kóralsetlögum í Arnarfirði. Sérprentum úr Hafrannsókni r 10. Hefti 10 pp.
[5] Hall-Spencer et al (2006). Marine Ecology Progress Series, 326, 1–9.
[6] Hall-Spencer et al. (2008). Ireland: Department of the Environment, Heritage and Local Government (DEHLG). 1–34.
[7] Jelbart et al. (2006). Marine Ecology Progress Series, 319, 93–102.
[8] Kamenos et al. (2004). ICES Journal of Marine Science, 61(3), 422–429
[9] Reef Life Survey, n.d. Retrieved from https://reeflifesurvey.com/
[10] Riosmena-Rodríguez et al. (2017). Coastal Research Library, 15, 3-26. Springer International Publishing, Switzerland.
[11] Thors (2018). Náttúru Fræðingurinn, 88(3-4), 115-124.
[12] Thors (2013). A video survey of maërl areas in Önundarfjördur and Ísafjardardjúp in 2011.

Jarðfræðistofa Kjartans Thors ehf, 1-9.

[13] Tupper, & Boutilier (1995). Canadian Journal of Fisheries and Aquatic Sciences, 52(9), 1834-1841[14] Wentworth (1922). The Journal of Geology, 30(5), 377-392