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Abstract—Software supply chains (SSCs) are complex systems
composed of dynamic, heterogeneous technical and social compo-
nents which collectively achieve the production and maintenance
of software artefacts. Attacks on SSCs are increasing, yet perva-
sive vulnerability analysis is challenging due to their complexity.
Therefore, threat detection must be targeted, to account for the
large and dynamic structure, and adaptive, to account for its
change and diversity. While current work focuses on technical
approaches for monitoring supply chain dependencies and es-
tablishing component controls, approaches which inform threat
detection through understanding the socio-technical dynamics are
lacking. We outline a position and research vision to develop and
investigate the use of socio-technical models to support adaptive
threat detection of SSCs. We motivate this approach through
an analysis of the XZ Utils attack whereby malicious actors
undermined the maintainers’ trust via the project’s GitHub and
mailing lists. We highlight that monitoring technical and social
data can identify trends which indicate suspicious behaviour
to then inform targeted and intensive vulnerability assessment.
We identify challenges and research directions to achieve this
vision considering techniques for developer and software analysis,
decentralised adaptation and the need for a test bed for software
supply chain security research.

Index Terms—software supply chain, socio-technical, adapta-
tion, topology, threat detection

I. INTRODUCTION

The software supply chain (SSC) involves a complex net-
work of interdependent components from initial requirements
gathering, to deployment upon an end-user system. Modern
software development heavily employs code reuse to enhance
productivity, this results in code making use of a network of
dependencies, most of which are opaque to the developer and
user. This interdependency ensures attacks against one com-
ponent may propagate downstream [1] with SSC attacks, such
as malicious packages, increasing by 156% yearly [2]. These
components are under continuous evolution and independently
maintained by different organisations and individuals oper-
ating within various geographical locations and legislative
environments [1]. This requires threat detection and security
controls to evolve alongside them and to perform continuous
evaluation within varying social and legislative environments.
SSC attacks have been highlighted as a key challenge by
the security and software engineering communities [3] due to
the increasing number of high-profile incidents [4], [5], their
impact upon a wide number of end-users, and the challenges
in detecting attacks relating to the complexity of the SSC.

Typically, approaches to secure the SSC focus upon depen-
dency monitoring, enhancing secure development practices, or

applying controls to each supply chain stage. These approaches
do not aim to mitigate social attack vectors and their effec-
tiveness in mitigating them is unknown [3], [6].

In contrast, this paper proposes an alternative approach
which leverages the complexity characteristics of the SSC, as
opposed to building controls to mitigate them. Through mon-
itoring and adapting to changes in: social behaviours, compo-
nents and structural properties, we suggest that threat detection
can operate in a targeted manner to detect complex and evolv-
ing social threats. We propose to generate and monitor socio-
technical topologies of the SSC to support analysis of socio-
technical threat indicators. To manage change, these topologies
can be analysed within an adaptive framework, resulting in
Socio-Technical Adaptive SSC Threat Detection. Expanding
on a previous approach for cyber-physical supply chains [7],
yet applying techniques for modelling and analysing socio-
technical dynamics specific to software development.

Towards achieving this vision, the contributions of this
position paper are as follows: 1) We motivate the need for
socio-technical topology modelling and analysis to support
threat detection of SSCs through a study of the XZ Utils
attack [8]. We highlight that aggregating social and technical
data sources could indicate suspicious developer behaviour. 2)
We propose a framework to adaptively detect threats in SSCs
supported by socio-technical topologies.

The rest of this paper is structured as follows. Section II
provides a background in SSC security, socio-technical secu-
rity, and socio-technical modelling. A motivating example of
the XZ Utils SSC attack is presented in Section III. Section IV
presents the proposed approach, Socio-Technical Adaptive SSC
Threat Detection. Section V provides a discussion, followed
by a conclusion in Section VI.

II. BACKGROUND AND RELATED WORK

Dependency-focused attacks vectors are common to SSC
security [3]. The Software Bill of Materials (SBOM) is a
key mitigator but suffers from numerous challenges [3], [9].
Version control systems, build systems, package distribution
systems, and end-user machines are also targets of attack [10].
Threats from social factors are also numerous, e.g. malicious
insiders injecting code [11] or from a variety of psychological
phenomena [12]–[14]. Consequently, software repositories can
be mined for social indicators of code quality, [15], [16],
bug reports can predict vulnerabilities [17], [18], version
control systems and mailing lists can link developers with



code [19] and chats can indicate project sentiment [20]. Where
anomalous code deviations, sentiment or bug reports indicate
a vulnerable software component. Machine learning (ML)
approaches show success in monitoring individual components
but not the complete supply chain or its change. They may
also suffer from high rates of false positives [21]. Quantum
ML has shown to offer lower accuracy and higher computation
than classical approaches [22]. The wide social and technical
attack surface suggests that SSCs should be considered as
a socio-technical system [23], [24]. Threats arising from
vulnerabilities in human, social and organisational factors are
widely known, e.g. social engineering [25], inadequate organ-
isational incident response preparation [26], and ineffective
security culture [27]. Socio-technical security considers that
unique vulnerabilities arise due to the interplay of both social
and technical vulnerabilities [28]. To identify unique socio-
technical threats, software-based threat detection must have the
means to model and reason about these concepts cohesively.

Socio-technical systems are complex and therefore challeng-
ing to model, monitor, and analyse due to their emergent,
heterogeneous, dynamic and large structures [29]. Network-
theoretic approaches are frequently used to understand these
structures [30]. Topology modelling is used to combine mul-
tiple dimensions, (e.g. cyber, physical, social) to allow cross-
dimensional analysis of structural properties [7], [31], [32].
However, there is a current lack of techniques which investi-
gate the use of socio-technical topologies of SSCs.

Pervasive monitoring and inspection of all components
across a dynamically evolving SSC is cost ineffective, creating
a resource allocation problem [7]. While topologies can be
used to manage the structural complexity of a complex system,
further techniques are needed to handle this change and
emergent behaviours. Adaptive software is used to manage
change, e.g. based on the Monitor, Analyse, Plan, Execute,
Knowledge (MAPE-K) adaptive software framework [33], and
was previously used for threat detection in cyber-physical
supply chains [7]. We propose this approach can also apply
to threat detection in SSCs yet including novel techniques
for modelling socio-technical factors of developers to inform
targeted analysis of software components for vulnerabilities.

III. MOTIVATING EXAMPLE: THE XZ UTILS SUPPLY
CHAIN ATTACK AND THREAT INDICATORS

In this section, we present an initial analysis of the social
and technical factors related to the XZ Utils attack [34], [35].

A. XZ Utils Attack Stages

The XZ Utils attack can be categorised into several stages:
Legitimate Contributions (LC) Late ’21 – Early ’22: Author
Jia Tan begins contributing small patches through the xz-
devel mailing list, focusing on minor bug fixes and feature
improvements. In total, Jia Tan authored over 500 patches
in multiple GitHub projects. These early contributions appear
legitimate, gradually establishing credibility.
Escalation of Control (EC) Early ’22 – Early ’24: Lead
maintainer Lasse Collin is placed under sustained social

pressure via mailing list discussions. Multiple anonymous or
sockpuppet accounts criticize slow project progress, gradu-
ally pressuring him into relinquishing control. Mid ’22 –
Early ’23: Jia Tan is recognized in Git metadata as an author,
eventually becoming a co-maintainer with commit access.
March ’23: Jia Tan tags and builds the first release under own
control (v5.4.2), marking a critical shift in project leadership.
June ’23 – January ’24: Technical groundwork is laid for the
attack: June ’23: Hans Jansen, a new actor, submits patches
introducing the GNU indirect function (ifunc) feature, which
is later leveraged for the backdoor. July ’23: Jia Tan disables
ifunc support in OSS-Fuzz builds, reducing external visibility.
January ’24: Control over the XZ Utils website is transferred
to GitHub Pages, under Jia Tan’s control.
Backdoor Deployment (BD) February ’24 – March ’24:
Jia Tan introduces a subtly obfuscated backdoor into the
codebase, hidden within binary test input files. The README
file discourages detailed scrutiny, making detection difficult.
Exposure and Removal (ER) March 28, ’24: Security
researcher Andres Freund identifies anomalous SSH behaviour
and privately notifies Debian and RedHat. March 29, ’24:
RedHat assigns CVE-2024-3094 [36], marking the vulnerabil-
ity as a critical security risk. March 30, ’24: A public back-
door warning is issued, and Fedora confirms that compromised
XZ Utils versions were included in a recent release.

B. Socio-Technical Threat Indicators

The complex technical backdoor was achieved through
social engineering by Jia Tan who was seemingly acting as
a normal developer [stage LC, see subsection III-A]. This
poses the question What types of developer behaviour can be
used to indicate the software is trending towards an insecure
state? To study this, we mined the XZ Utils GitHub commits
and issues [37] and mailing list [38] from the start of the
project in 2008 to 2025. We examined various sources of
developer activity, focusing on the threat actor, Jia Tan, with
a comparison with known legitimate maintainers. Examining
commit metrics, Table I presents statistics for file-level Git
commit statistics between Jia Tan and Lasse Collin for the
period 2022-01 to 2024-06. Despite Lasse Collin affecting
more files, Jia Tan made, on average, more substantial changes
to each file than Lasse Collin.

Figure 1 plots the average overall changes over time and
clusters of the attack stages are highlighted: the most substan-
tial changes occurred when backdoor was inserted [BD][ER].
The results illustrate that at similar times to the anomalous

TABLE I
FILE-LEVEL LINE CHANGE STATISTICS: LINES ADDED/DELETED BY

COMMITS FROM JIA TAN VS. LASSE COLLIN FROM 2022-01 TO 2024-06

Statistic Jia Tan Lasse Collin

Total File Changes 697 1973
Average Additions 89.42 28.26
Average Deletions 42.10 18.31
Average Total Changes 131.53 46.56
Std Dev Additions 396.20 146.41
Std Dev Deletions 163.45 147.61
Std Dev Total Changes 492.14 249.01



Fig. 1. Total Changes in Commits of authors Jia Tan and Lasse Collin

Fig. 2. Centrality of author Jia Tan

commit times (see later discussion of Fig. 3), Jia Tan’s
changes were both substantial and anomalous compared to the
legitimate maintainer Lasse Collin.

To compare Jia Tan’s impact upon the repository against
all other developers, we built a network of the commits to
each file and their authors. We then calculate node centrality
(indicating the importance of an node (=author) in the net-
work [39]) over time for Jia Tan, shown in Fig. 2. A higher
value of centrality indicates that Jia Tan’s influence upon the
entire source code repository is high, with notable peaks at
similar times to the malicious code entries [EC][BD].

The malicious contributions occurred at atypical times [35]
which might indicate more than one person inserting the code
due to working at a different times of day. Figure 3 plots Jia
Tan’s commits over time against the time of day. The cluster
in the bottom right corner is the final malicious backdoor
insertion [BD]. However, benign code had occasionally been
submitted at atypical times of day (e.g. 2023-01), so alone,
these results might not be seen as anomalous.

Further suspicious activities were related to the communica-
tions on the mailing list whereby Lasse Collin was subjected

Fig. 3. Author Jia Tan commits plotted over months and time of day.

Fig. 4. Mean of the communication sentiment of author Jia Tan.

to a coordinated pressure campaign from multiple sock puppet
accounts to relinquish control of the maintenance to Jia
Tan [EC]. While data points in the mailing lists relating
to these authors were limited, an analysis of the pressuring
actors’ sentiment, affinity for the suspicious actor Jia Tan and
low interaction with the repository could indicate anomalous
and untrustworthy actions. As an example, Hans Jensen en-
tered the scene mid-2023 submitting a pair of patches that
introduced the ifunc feature. These patches were reworked
by Lasse Collin and then merged by Jia Tan. Beyond these
interactions, and later filing a Debian bug requesting an update
to XZ Utils v5.6.1, Hans Jensen does not exist anywhere else
on the internet [34], [35].

Therefore, to analyse this communication, Fig. 4 presents
a graph of Jia Tan’s communication with other developers in
the issues created in GitHub. The attribute on each edge is the
mean value of the sentiment of that communication. Although
this information alone is useful in identifying change in de-
veloper interactions, correlating it with change in components
is necessary to identify any potential impact.



Fig. 5. Author Jia Tan issues’ are clustered (yellow/purple) according to
various writing features and plotted against the sentiment (y-axis) to identify
if more than one person was using the account.

To further investigate whether Jia Tan was represented
by more than one person, we examined various syntactic
and lexical features of their writing in the GitHub’s issues
including: sentiment polarity, subjectivity, lexical richness,
punctuation frequency, readability, and average sentence length
using the Natural language toolkit [40] and TextBlob [41].
We then used the k-means algorithm (via sci-kit learn [42])
to cluster these writing features to identify whether there
are several clusters of writing style, indicating that multiple
authors where behind the username Jia Tan. Experimenting
with different k values, i.e. the number of clusters, k = 2
separated clusters best, suggesting that two different persons
might have been involved. Figure 5 plots for these two clusters
over time against the sentiment of the issue text (y axis),
i.e. the multi-dimensional values of the writing features are
themselves are not depicted, only the two colours yellow and
purple are used to distinguish the two assumed authors. The
first cluster (yellow points), potentially indicating one author,
has mainly a positive sentiment and is mainly found during
escalation of control [EC], in particular in early 2023. The
second cluster (purple points), potentially another author, takes
over the majority of discussions starting from mid 2023. This
cluster contains the majority of the negative sentiment while
the pressure was being asserted (except for some outliers).
The first author returns during the time the final backdoor is
inserted in early 2024 [BD].

Examining these figures as a whole, it can be see that during
the [EC] [BD] stages, Jia Tan has anomalous amount of lines
changes in files (Fig. 1), increasing influence on the overall
code base (Fig. 2), anomalous times of commits (Fig. 3), and
potentially multiple authors with increasing negative sentiment
in the issues that they created (Fig. 5). Therefore, this analysis
shows that integrating technical and social data and analysing
the trends might be used to identify anomalous developer
behaviour which could indicate subversion and threats.

IV. SOCIO-TECHNICAL ADAPTIVE THREAT DETECTION

In this section, we propose Socio-Technical Adaptive Threat
Detection. Figure 6 illustrates the approach by means of the
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Fig. 6. SSC Threat Detection mapped on the MAPE-K framework

MAPE-K adaptive framework [33]. It will mine data sources
(e.g. from version control systems, developer chat) to build
and maintain socio-technical topologies of the supply chain
(e.g. from code, tools, developer behaviour). The maintenance
of these topologies will allow monitoring for change in social
and technical components. Components where the dynamics
between both social and technical components indicate a
combined socio-technical vulnerability can then be analysed
for the level of deviation from a previously known secure state
(e.g. metrics such as lines of code and code churn). The threat
to the SSC can then be identified through planning further
execution of testing by tracing these components to determine
further insecure states.
Building Socio-Technical Topology Models. Key to the
approach is the ability to manage the structural complexity
of the SSC. This requires monitoring the entire SSC for
changes to prioritise components for vulnerability analysis.
This includes modelling the connectivity between components,
understanding the interplay between social and technical di-
mensions, and the reachability of vulnerabilities across the
different components. To achieve this, we propose the use
of multidimensional topologies – structural models – of the
SSC [7]. To build these topologies, a variety of available data
sources can be used to model them as graphs.

Formally, in this approach, a socio-technical topol-
ogy model of a SSC is defined as a tuple STT =
(S,D,A,R, P,W,M,K, I) where:

• S is a set of source files S = {s1, s2, ..sn}
• D a set of tuples representing dependency relationships

between source files, D ⊆ S×S = {(s1, s3), (s1, s2)...}.
• A is a set of authors who contribute to the software

repository A = {a1, a2..., an}.
• R is a set of tuples defining relationships between authors

R ⊆ A×A = {(a1, a2), (a1, a3)}.
• P as a set of parameters that describe author relation-

ships, such as communication frequency and sentiment,
e.g. P = {frequency, sentiment, ...}



• W is a function assigning a weight to each relationship
based on parameters W : R → R|P |, e.g. W (a1, a2) =
(0.2, 0.9, ...)

• M is a relation between maintainers and source files:
M ⊆ A× S = {(a1, s1), (a1, s2), ...}.

• K is a set of activities performed by maintain-
ers while interacting with source files, e.g. K =
{additions, delections, ...}

• I is a function defining the influence of maintainers on
source files, based on their activities: I : M → N|K|, e.g.
I(a1, s1) = (4, 12, ...).

1. Monitoring Socio-Technical Topologies for Threat Indi-
cators. During this stage, data sources (e.g. version control
systems, mailing lists) are mined to update the topology
models over time. This timeline allows tracking change in
the social and technical dimensions. Various metrics will be
computed (e.g. code churn, network properties, communica-
tion frequency and sentiment, volatility of dependencies). Met-
rics changing together might indicate anomalous behaviour.
An actor whose sentiment changes in tandem with changes
in coding quality, commit time or overall influence on the
code. The difference between STTs at different times can
be taken, e.g. ∆STT = STT (t2) − STT (t1). To identify
suspect components they can be filtered, i.e. to select source
files according to the developer influence and their changing
relationship with other developers

SR = {si | ∃(a1, a2) ∈ R2 −R1 such that si
is involved in (a1, a2) and W (a1, a2) ≥ Wthreshold} (1)

and to filter according to their influence on a file:

SI = {si | ∃(aj , si) ∈ I2 − I1 such that
I(aj , si) ≥ Ithreshold} (2)

Then, to select components which fulfil both criteria:
Sselected = SR ∩ SI . Wthreshold and Ithreshold would need to be
determined through monitoring the nominal behaviour of the
system, as with any anomalous detection system.
2. Analysing Components for Vulnerability Feasibility. The
filtered components identified previously will be combined
with associated socio-technical threat indicators to analyse
the feasibility of one or more vulnerability class existing
including: 1) Design flaws such as through architectural
model-checking and antipatterns, e.g. from Common Weak-
ness Enumerators1. 2) Implementation bugs using static anal-
ysis and known vulnerable code, e.g. from OWASP TOP 102.
3) Configuration errors through validation of insecure default
settings. 4) Operation and Maintenance, e.g. through depen-
dency auditing and CI/CD logs.
3. Planning Component Vulnerability Reachability Trace.
If a feasible vulnerability is identified in one of the selected
components in the previous stage, the reachability of that
vulnerability must then be determined through tracing its

1https://cwe.mitre.org/
2https://owasp.org/www-project-top-ten/

impact upon downstream and upstream components in the
SSC. The first stage can simply identify adjacent components
where D+

s is the set of adjacent upstream components in the
form {p′, p} and D−

s the set of downstream components of
the form {p, p′}.
4. Executing Vulnerability Testing. An analysis will need to
test identified components, pruning elements of the depend-
ability tree where the feasibility is low. This testing could take
several forms, such as analysing the syntax and semantics of
the code, e.g. through static or dynamic analysis, fuzz testing
or machine learning approaches where the particular approach
will need to be evaluated and selected according to features
such as data availability.

V. LIMITATIONS AND RESEARCH VISION

In this section, we present a discussion of the proposed
approach and identify future research challenges to achieve it.
Adaptation. We argue that threat detection in SSCs must be
adaptive to manage its high rate of change. While adaptative
software frameworks are proven in many domains, SSCs pose
challenges due to the heterogeneity and distributed nature of
the components. The adaptation rate must consider this rate of
change to be effective and the control functionality will need to
accommodate the decentralised supply chain structure. Where
engineering decentralised adaptation is an on-going research
challenge [33].
Developer Behaviour Analysis. Developer activities as in-
dicators for vulnerabilities have been investigated previously
(Section II). However, these sources are large, varied and
continuously evolving, e.g. new tools such as generative AI. To
achieve the vision of this paper, we need to understand: What
types of developer behaviour can support identification of
insecure states in SSC components? and How does the efficacy
of these approaches vary between SSC components? Eliciting
the appropriate technique for each software repository will
require context-aware methods.
Software Component Analysis. Analysing individual soft-
ware components for vulnerabilities has seen considerable
work in literature (Section II), although less so consider-
ing interdependency between components. New modelling
approaches which apply metrics for vulnerability feasibility,
suitable for comparison across diverse components are needed.
Hence, to achieve this we seek to understand: What are the
patterns which can be used to identify sequences of insecure
states in SSC components? Identifying patterns of connected,
potentially vulnerable components may support efficient iden-
tification of vulnerabilities without exhaustive search.
Evaluation of the Approach. Identifying SSC attacks is chal-
lenging due to sparse attack data, although this is increasing.
In part, we mitigate this by identifying suspicious activities
used to inform targeted vulnerability analysis. Regardless, we
seek to understand: How effectively does an adaptive approach
support socio-technical threat detection in SSCs? Comparing
adaptive and non-adaptive approaches will require a controlled
test bed covering the complete supply chain from design to
deployment. The creation of such a test bed will strongly

https://cwe.mitre.org/
https://owasp.org/www-project-top-ten/


benefit SSC security research. Yet, while some open-source
data is available, diverse social data and tool configurations
will need to be developed.

VI. CONCLUSION

In this position paper, we outlined our research vision of a
Socio-Technical Adaptive SSC Threat Detection. We motivated
the need to build socio-technical topologies to understand the
relationship between socio-technical dynamics and vulnera-
bilities through analysis of the data from the XZ Utils attack.
We conclude with several challenges to the realisation of this
approach, including investigating social and technical analysis
techniques and the need for a SSC testbed to support research
and evaluation efforts.

ACKNOWLEDGEMENTS

This project has received co-funding from the European
Union’s Digital Europe Programme under grant agreement no.
101127453 National Coordination Centre for Cybersecurity
in Iceland and 101127307 Defend Iceland: Nationwide bug
bounty platform.

REFERENCES

[1] C. Okafor, T. R. Schorlemmer, S. Torres-Arias, and J. C. Davis, “SoK:
Analysis of software supply chain security by establishing secure design
properties,” in Proc. 2022 ACM Workshop Soft. Supply Chain Offensive
Res. and Ecosyst. Defenses, 2022.

[2] Sonatype. (2024) 10th annual state of the software supply chain.
Accessed: 2025-03-08. [Online]. Available: https://www.sonatype.com/
state-of-the-software-supply-chain/introduction

[3] W. Enck and L. Williams, “Top five challenges in software supply chain
security: Observations from 30 industry and government organizations,”
IEEE Secur. Priv., vol. 20, no. 2, 2022.

[4] R. Alkhadra, J. Abuzaid, M. AlShammari, and N. Mohammad, “Solar
winds hack: In-depth analysis and countermeasures,” in 2021 12th Int.
Conf. Computing Commun. Netw. Technologies (ICCCNT). IEEE, 2021.

[5] S. Feng and M. Lubis, “Defense-in-depth security strategy in log4j
vulnerability analysis,” in 2022 Int. Conf. Adv. Data Science, E-learning
Inf. Syst. (ICADEIS). IEEE, 2022.

[6] L. Williams et al., “Research directions in software supply chain
security,” ACM Trans. Softw. Eng. Methodol., vol. 34, no. 5, 2025.

[7] T. Welsh, F. Alrimawi, A. Farahani, D. Hassett, A. Zisman, and
B. Nuseibeh, “Topology-aware adaptive inspection for fraud in I4.0
supply chains,” IEEE Trans. Ind. Inform., vol. 19, no. 4, 2022.

[8] P. Przymus and T. Durieux, “Wolves in the repository: A software
engineering analysis of the xz utils supply chain attack,” in 2025
IEEE/ACM 22nd Int. Conf. Min. Softw. Repositories (MSR). IEEE,
2025.

[9] T. Stalnaker et al., “BOMS away! Inside the minds of stakeholders: A
comprehensive study of bills of materials for software systems,” in Proc.
46th IEEE/ACM Int. Conf.Softw. Eng., 2024.

[10] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “SoK: Taxonomy
of attacks on open-source software supply chains,” in 2023 IEEE
Symposium Secur. Priv. (SP). IEEE, 2023.

[11] M. Lins, R. Mayrhofer, M. Roland, D. Hofer, and M. Schwaighofer,
“On the critical path to implant backdoors and the effectiveness of
potential mitigation techniques: Early learnings from XZ,” ArXiv e-print
2404.08987, 2024.

[12] E. Iannone, R. Guadagni, F. Ferrucci, A. De Lucia, and F. Palomba, “The
secret life of software vulnerabilities: A large-scale empirical study,”
IEEE Trans. Softw. Eng., vol. 49, no. 1, 2022.

[13] I. Rauf et al., “Influences of developers’ perspectives on their engage-
ment with security in code,” in Proc. 15th Int. Conf. Coop. Hum. Asp.
Softw. Eng., 2022.

[14] M. Ivory, J. Towse, M. Sturdee, M. Levine, and B. Nuseibeh, “Recog-
nizing the known unknowns; the interaction between reflective thinking
and optimism for uncertainty among software developer’s security
perceptions,” Technol. Mind Behav., vol. 4, no. 3, 2023.
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