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Genetic data have for over 20 years been recognized as one of the most promising 

avenues for empirical language evolution research (Christiansen & Kirby, 2003; 

Fisher, 2017; Fitch, 2017). Genes have been described as the closest thing to 

“fossils of language”, with archaic human DNA akin to a “time machine” (Fitch, 

2017). The assumption is that genome-wide association studies (GWAS) and 

other genetic research can pinpoint genes involved in speech and language, 

providing a springboard for subsequent analyses of primate and archaic human 

genomes that can shed light on the timeline for language evolution in our 

ancestors (Christiansen & Kirby, 2003; Fisher, 2017; Fitch, 2017). GWAS on 

speech and language has been hampered by a lack of large cohorts with genetic 

information and relevant phenotypes, although important advances have recently 

been made (Doust et al., 2022; Eising et al., 2022). Here we discuss new results 

on the genetics of speech acoustics and musicality traits. Our aim is to illustrate 

the different ways in which genetic research can test and inform theorizing on the 

evolution of language and speech broadly construed. 

 

We begin with a new attempt at the “time machine” strategy. To better understand 

genetic factors influencing speech acoustics, we performed a GWAS on voice 

pitch (f0) and vowel formants in a population with limited dialectal differences 

(N = 12,901) (Gisladottir et al., 2023). We discovered sequence variants in 

ABCC9 that influence voice pitch and other traits, including pulse pressure and 

the expression of ABCC9 in the adrenal gland (of potential relevance for proposals 

linking vocal behavior with self-domestication and adrenal gland function; 

Benítez-Burraco et al., 2018; Ghazanfar et al., 2020; Wilkins et al., 2014). Since 

the vocal channel plays a relatively more important role in humans than in other 

great apes (Corballis, 2002; Levinson & Holler, 2014), we compared the human 

ABCC9 to other primates, identifying a missense change in ABCC9 that is fixed 

in humans but not present in primate reference genomes. When did this missense 

change emerge? By examining four genomes from archaic humans, we conclude 

that the missense change occurred after hominins split from the great apes but 

before they diverged into modern humans, Neanderthals, and Denisovans. The 

implications of this finding are far from clear. Voice pitch is a simple acoustic 



  

 

measure without direct relevance for vocal learning or cooperative behavior. 

Nevertheless, this study is a reminder that the more we know about the genetic 

components involved in human communication at all levels, the better we will be 

able to sketch how speech and language evolved in our ancestors.  

 

There are several limitations of the strategy above. A single gene account for a 

trait is implausible, given the messy mappings between genetics and complex 

traits (Fisher & Vernes, 2015). However, there are ways to leverage the general 

genetic architecture behind a trait, which we illustrate with a study on human 

musicality. Since Darwin, several authors have proposed that the origins of 

language can be traced to a musical or prosodic proto-language, with the evolution 

of vocal imitation for singing as a key stepping stone (Darwin, 1871; Fitch, 2010). 

Fitch has pointed out some testable predictions that emerge from this account, 

noting that “because the neural mechanisms underlying song were precursors of 

phonological mechanisms in spoken language, we expect considerable overlap 

between phonological and musical abilities (within individuals) and mechanisms 

(across individuals),” (Fitch, 2010, p. 506). To test this prediction, we performed 

a GWAS of musicality traits, using tests of musical pitch and beat perception 

(Peretz & Vuvan, 2017) and self-reported music perception and training 

(Müllensiefen et al., 2014) (N = 20,440, age 18-95 years). We found that 

musicality traits correlate with speech and language traits at the phenotypic level. 

To test overlap of the genetic mechanisms, we then estimated the genetic 

correlation of the musicality traits with 26 other cognitive traits. Besides genetic 

correlations with intelligence and personality for some measures, we found that 

all musicality traits show substantial genetic correlation with verbal working 

memory, also known as the phonological loop (rg = 0.43 to 0.30, P < 1.3×10-5). 

Verbal working memory is necessary to learn complex utterances and thus 

relevant for vocal learning (Aboitiz, 2018). While the causal scenarios underlying 

genetic correlations are difficult to entangle, these findings are in line with the 

view that musicality and spoken language share genetic roots.  

 

Finally, we will turn back to the GWAS on speech acoustics. We estimated the 

heritability of voice pitch and vowel formants, providing an estimate of 

phenotypic variance explained by common sequence variants (SNP-based 

heritability). We discovered that even vowel formants have a small-to-modest 

SNP-based heritability, particularly F2 (14%). This finding has bearing on the 

proposal that genetic biases influencing the vocal tract can be amplified through 

language transmission, ultimately contributing to linguistic diversity (Dediu et al., 

2017, 2019).  

 

Each of these strategies discussed above brings numerous complexities. However, 

the promise of GWAS for language evolution remains tantalizing, and it is now 

more attainable than ever due to fast developments in population genomics.   
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