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a  b  s  t  r  a  c  t

As  the  commonly-used  von  Bertalanffy  growth  function  (VB)  does  not  explicitly  incorporate  changes  in
growth due  to allocation  of  energy  to reproduction,  a more  flexible  function  could  be  used  when  attempt-
ing to  model  juvenile  and  adult growth  simultaneously.  Here  we review  biphasic  growth  models,  with
emphasis  on  those  that  explicitly  incorporate  the  cost  of reproduction,  and  propose  two  new  models:  the
von Bertalanffy  logistic-L∞ (VB  log-L∞)  and the  Cost  of  Reproduction  (CoR)  models.  We  fitted  the  models
to  eight  data  sets  from  males  and females  of four  unfished  or lightly-fished  Arctic  lake  trout  (Salvelinus
namaycush)  populations,  and  compared  their  fits to those  of  the  commonly-used  growth  functions.  In all
cases, a biphasic  growth  model  fitted  the data  better  than  simpler  models  such  as the VB  and  the Richards
models.  Of  the  biphasic  models,  those  that  explicitly  represent  the reproductive  process  fitted  the  data
best,  particularly  the  Quince–Boukal  model  with  the  allometric  exponent  on  the  growth  rate-weight
relationship  ˇ  =  0.8. The  proposed  models  and  the  Quince–Boukal  model  provide  a  smooth  transition
between  juvenile  and  adult  growth  by  incorporating  a logistic  function  with  parameters  dependent  on
the  proportion  of mature  fish  (or  probability  of being  mature)  at  age.  In addition  to  fitting  growth  models
to the size-at-age  data,  we  also  attempted  an  integrated  estimation  for the  three  models  that  predict  the
age at maturity  (the  models  are  simultaneously  fit to two  data  components,  size  at  age  and  maturity  at
age.) The  integrated  estimation  was  the best compromise  between  modeling  the  two  biological  processes
(growth  and  reproduction),  but  the  separated  estimation  provided  similar  results  in most  cases,  and  may
be easier  to implement.  We  believe  that  taking  the  cost  of  reproduction  into  consideration  is  central
for growth  curves  used  in  stock  assessment  models,  as changes  in  growth  trajectories  may  impact  the

perception  of stock  status.  Future  research  should  focus  on  the  sensitivity  of management  advice  to  these
growth  curves  for commercially-important  fish stocks.  For  data-poor  stocks,  the  models  based  on  first
principles,  such  as  the  Quince–Boukal  model,  can  be  used  to produce  management  advice  based  on  life
history  invariants,  taking  into  account  information  on  metabolic  rates  that  can  be obtained  from  other
studies.

©  2015  Elsevier  B.V.  All  rights  reserved.
. Introduction

The von Bertalanffy growth function (VB curve, von Bertalanffy,
938), the most widely used equation to model fish growth, is based

n the assumption that the change in body weight over time results
rom the difference between the somatic process of building up
anabolism) and breaking down (catabolism). The VB model states

∗ Corresponding author at: Inter-American Tropical Tuna Commission, 8901 La
olla Shores Drive, La Jolla, CA 92037-1509, USA. Fax: +1 8585467133.

E-mail address: cminte@iattc.org (C.V. Minte-Vera).

ttp://dx.doi.org/10.1016/j.fishres.2015.10.023
165-7836/© 2015 Elsevier B.V. All rights reserved.
that anabolic processes scale with  ̌ = 2/3 of the body mass, while
catabolic processes scale linearly with body mass (i.e., exponent
� of the relationship between body mass and the energy used in
catabolic process is 1). As von Bertalanffy (1957) states, “there will
be growth so long as building up prevails over breaking down; the
organism reaches a steady state if and when both processes are
equal.” In terms of length, the growth rates decrease linearly with
the increase in size (LVB model in Quinn and Deriso, 1999: pg. 132).

von Bertalanffy (1957) also proposed that different metabolic types
should be considered for different species (e.g.  ̌ /= 2/3), but  ̌ is
rarely changed in growth models. Metabolic studies, however, indi-
cate that  ̌ for fishes shows a normal distribution centered on 0.79

dx.doi.org/10.1016/j.fishres.2015.10.023
http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fishres.2015.10.023&domain=pdf
mailto:cminte@iattc.org
dx.doi.org/10.1016/j.fishres.2015.10.023
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Table 1
Discontinuous biphasic growth: separate models for juveniles and adult growth. VB curve—von Bertalanffy growth function.

Reference Juvenile growth Adult growth Application

Brody (1945) Exponential VB curve
Day and Taylor (1997) Power function of body mass VB curve
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Roff (1983) Constant growth rate Growt
Lester et al. (2004, 2014) Linear VB cur
Soriano et al. (1992) VB curve VB cur

s.e. = 0.011) and ranges from 0.40 to 1.29 (Clarke and Johnston,
999).

The cost of reproduction is not considered explicitly in the clas-
ic VB curve. However, Essington et al. (2001) considered � to be
he allometric slope of all energy expenditure, i.e.  also includes
ther energetic costs apart from catabolism, such as swimming
nd reproduction. The assumption of � = 1 is supported by empir-
cal data: � was 1.02 on average (median 0.97, range 0.9–1.1) for
he 17 species-locations combinations compiled by Essington et al.
2001).

Because fish are indeterminate growers, i.e.,  surplus energy is
artially allocated to reproduction and partially to growth after
he onset of maturity, there have been suggestions that the cost
f reproduction should be explicitly taken into account when mod-
lling fish growth (e.g., Brody, 1945; Roff, 1983). Several authors
e.g., Day and Taylor, 1997; Soriano et al., 1992) have proposed that
wo separate equations should be used: one for immature individ-
als (i.e., juveniles), where all surplus energy is devoted to somatic
rowth, and one for mature individuals, where a proportion of sur-
lus energy is allocated to reproduction. Other authors (e.g., Laslett
t al., 2002; Quince et al., 2008a) have proposed continuous func-
ions that model a smooth transition between growth phases that

ay  or may  not be related to the cost of reproduction.
In this paper we review the continuous biphasic growth mod-

ls and propose two new models (the Cost of Reproduction model,
oR, and the von Bertalanffy with L∞ as a logistic function of age,
B log-L∞) that explicitly incorporate the cost of reproduction and

ntegrate maturity information as an extra likelihood component.
e fit all models to data sets from males and females of four popu-

ations of Arctic lake trout Salvelinus namaycush (Walbaum 1792),
nd compare the fits to those of commonly-used growth functions.

. Biphasic growth models

In this section we review the literature on biphasic growth
odels and propose two new models. Although not all biphasic

rowth models have been proposed to explicitly model the cost
f reproduction, they may  be able to mimic  the changes due to
he allocation of energy into reproduction. We  found three types of

odelling approaches in the literature: (i) discontinuous models, in
hich a separate model is used for each growth phase, and the age

f transition is externally determined; (ii) continuous models with
losed-form solutions, which are in essence a modification of the
asic VB model with a smooth transition between growth phases
nd (iii) continuous models with no closed-form solution, which
re based on first principles, do not have an analytical solution, and
ust be integrated numerically.

.1. Discontinuous models

In this modelling approach, one function is chosen to model
rowth up to the age tx and another to model growth for older

nimals. The age tx is set externally and may  be the age at matu-
ity (Table 1). Brody (1945) (see also Quinn and Deriso, 1999: p.
34) proposed that length will increase exponentially to the age

x and thereafter will follow a VB curve. Roff (1983) proposed that
 is inversely proportional to the gonadosomatic index American plaice
Walleye
Nile perch

the juvenile growth rate is constant, while the adult growth rate is
inversely proportional to the gonadosomatic index. Day and Taylor
(1997) suggested that the juvenile growth rate is a power function
of body mass, while the adult growth trajectory follows a VB curve.
Lester et al. (2004, 2014) argue that fish grow linearly until they
mature (at tx), then they grow following a VB curve. Soriano et al.
(1992) proposed that two  VB curves joined at age tx. The disadvan-
tage of those models is that tx must be specified in advance. For
these biphasic curves to be continuous the predictions for L(tx)and
the derivatives at tx for the two functions must match (Quinn and
Deriso 1999: p.134). An option for using this approach would be to
do a grid search for the best tx.

2.2. Continuous models

Biphasic growth can also be modelled using a function to model
the transition between phases. These models can be thought of as an
individual changing smoothly between growth phases through its
lifetime or as an aggregate summary of the somatic growth of a pop-
ulation of individuals that have discontinuous changes of phases at
a range of ages. We  found two  groups of models in the literature:
those with closed-form solutions for the expected length at age and
those with recursive equations, for which the expected length at
age is obtained by numerical integration, as no closed-form solution
exist.

Six continuous biphasic growth models with closed-form solu-
tions are listed in Table 2. All are based on modifications to the VB
curve. Soriano et al. (1992) proposed models that include a hyper-
bolic function to create either L∞ or k at age as a proportion of the
overall L∞ or k. The growth increment decreases to a minimum and
is suddenly followed by the largest growth increment, which then
steadily declines. Soriano et al.’s (1992) models were motivated by
changes in diet that lead to the largest growth increment occur-
ring when fish are thought to have fully switched to a new diet
(e.g., from planktivore to piscivore). Porch et al. (2002) proposed a
model in which the VB curve K coefficient declines exponentially
with age. Ohnishi et al. (2012) proposed a VB model that considered
that the proportion of energy allocated to reproduction changes
smoothly with age following a logistic curve (“S-type” curve), with
its inflection point at the age of sexual maturation. Laslett et al.
(2002) proposed a VB curve with two  growth parameters k and a
logistic function that determines how K changes from one phase to
the next. The curve makes a smooth transition between two  growth
parameters (k1 and k2). We  propose the VB logistic-L∞ model, by
assuming a logistic transition between two asymptotic lengths L∞1
and L∞2 = L∞1 + ıL∞ . We  choose L∞rather than k because changes
in L∞ performed better in other applications (e.g., time-varying
growth, unpublished results). Also, near-linear growth for juveniles
seen in many species is well modelled with a large L∞that is not
compatible with the size of old individuals, indicating that model-
ing changes in L∞ with age could provide a reasonable approach to
modelling growth. In the VB log-L model, the asymptotic length
∞
at age is given by

L∞,a = L∞1 +
(

ıL∞ × p (a)
)

(1)
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Table  2
Continuous biphasic growth: closed-form models.

Model Parameters Equation Reference

VB-hyperL∞ 5
� =

{
L∞, t0, k, h, th

} L (a) = L∞

[
1 − h

(
(a − th)2 + 1

)−1
]{

1 − exp [−k (a − t0)]
}

Soriano et al. (1992)

VB-hyperK 5
� =

{
L∞, t0, k, h, th

} L (a) = L∞

{
1 − exp

[
−k

[
1 − h

(
(a − th)2 + 1

)−1
]

(a − t0)

]}
Soriano et al. (1992)

VB-damped 5
� =

{
L∞, t0, k1, k2, �

} L (a) = L∞
{

1 − exp
[

(k2/�
)

(exp (−�a) − exp (−�t0)) − k1 (a − t0)]
}

Porch et al. (2002)

VB-S 6
� =

{
L∞, t0, k, v, �, tm

} L (a) =
L∞

{
1 − exp

[
−k

(
(1 − v) (a − t0) −

(
v/�

){
ln (1 + exp (−� (a − tm))) − ln (1 + exp(−� (t0 − tm))

})]}Ohnishi et al. (2012)

VB-logK 6
� =

{
L∞, t0, k1, k2, ˛, ˇ

} L (a) = L∞
{

1 − exp (−k2 (a − t0))
[

1 + exp
(

−ˇ (a − t0 − ˛)
)

)/
(

1 + exp
(

ˇ˛
))]−(k2−k1)/ˇ}

Laslett et al. (2004)
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VB  log-L∞ 6
� =

{
L1,∞, L2,∞, t0, k, t50, t95

} L (a) ={
L1,∞ + (L2,∞ − L1,∞)

[
1 + exp

(

nce L∞,a is obtained, the VB curve is used to compute the expected
ize at age. The transition p(a) can be assumed to be a consequence
f maturity, and can be modelled using a logistic maturity-at-age
unction.

Three additional continuous models are included in our review,
hose that have no closed-form solution, but are rather modeled
sing recursive equations (Table 3). The first is the Gompertz func-
ion (Gompertz, 1825) with delayed development (Thornley and
rance, 2007). The Gompertz growth function has three parame-
ers, the initial weight W0, the initial specific growth rate �0 and
he proportional rate at which growth rates declines Dm. In the
ompertz function, the growth rate starts to decline at age a = 0.
hornley and France (2007) proposed a model for which the pro-
ortional rate at which the growth rate declines is also variable,
elaying the onset of the maximum proportional rate, supposedly
o a later age, perhaps related to reproduction. This is achieved by
eplacing D with D(a), a two-parameter equation as a function of
ge a: D(a) = Dm(1 − exp(−ka)). The parameter k determines how
uickly D moves to Dm, which is the maximum proportional rate
f decline of the growth rate. The differential equation of changes
n weight over age cannot be integrated analytically; thus numer-
cal integration methods must be applied. Also, the length-weight
arameters are necessary to transform weight at age to length at
ge. The second recursive model was proposed by Quince et al.
2008a,b) based on previous work by Lester et al. (2004) and gen-
ralized by Boukal et al. (2014). The Quince–Boukal model is based
n first principles and bioenergetics considerations. Unlike the
ommonly-used VB curve, which assumes that the metabolic cost
ncreases linearly with weight (� = 1),  while the energy intake scales

ith  ̌ = 2/3 of body weight, the Quince–Boukal releases those two
ssumptions, and replaces them by the assumption that the instan-
aneous growth rate (dW/dt) scales with  ̌ of body weight (i.e.,  ̌ = �)
nd  ̌ can be a range of values. The cost of reproduction is implic-
tly included in the Quince–Boukal model. Quince et al. (2008a)
roposed the model in a transformed unit, proportional to length.
oukal et al. (2014) presented alternative formulations of the model

n units of length or weight, and also generalized it to allow for
on-isometric growth (Eq. (T3.6)). The model depends on seven
arameters (Eqs. (T3.4, T3.5, and T3.7): L0 the length at age 0,  ̌ the
llometric exponent in the growth rate-weight relationship, c the
oefficient in the allometric growth rate-weight relationship, q the
onversion factor between somatic and gonadic investment, r the
elative reproductive investment, and the two parameters of the
aturity-at-age curve. The number of parameters can be reduced
y assuming that the energy allocation to reproduction maximizes
tness.

We  propose a third recursive model, the Cost of Reproduction
CoR) Model. We  start with the von Bertalanffy growth model for
(19) (a − t50)) / (t95 − t50)
)]−1

}{
1 − exp [−k (a − t0)]

} This study

length and include a term for the cost of reproduction after maturity
that scales with the cube of the length (or linearly with body mass,
if the exponent of the length-weight relationship is equal to 3). The
VB curve assumes the growth rate decreases linearly with length:

dL

da
=  ̨ − �L (2)

where L is length, � and � are parameters. The solution for this
differential equation (reparametrized in the standard way) is:

La = L∞ (1 − e−k(a−t0)) (3)

where L∞ = ˛
�

is the asymptotic maximum length, k = � (in time
units−1), and t0 is the theoretical age at which the length is 0. We
suggest the inclusion of a term that explicitly takes into account
the cost of reproduction:

dL

da
=  ̨ − �L − p (a) rL3 (4)

where p(a) is the proportion of fish mature at each age a (Eq. (T3.9))
and r is a parameter. The cost of energy used in reproduction is
assumed to be proportional to the body mass when the exponent
of the length-weight relationship is equal to 3.

We approximated the differential equation by a difference equa-
tion with small time steps (Euler integration method), so that the
growth increment is:

Ga =  ̨ − �La−1 − p (a) rL3
a−1 (5)

The length at age a is:

La = La−1 + Ga (6)

The model is initiated at La0 , the length at age a0, which is also a
parameter. Age a0 can be chosen to be an age close to the mini-
mum  age in the data set, well before the onset of maturity. In this
case p (a) rL3

a−1 = 0, because p (a) = 0. The first growth increment
is, therefore:

Ga0+1 =  ̨ − �La0 (7)

Ga0+1 can be used as a parameter instead of ˛, so that:

 ̨ = Ga0+1 + �La0 (8)

The maturity-at-age proportion, p(a), is modelled using a two-
parameter logistic function (Eq. (T3.10)). Therefore, the CoR model
has six parameters: La0 ,Ga0+1, �, r, t50 and t95. We  assumed in this

application that a0 = 0 days and La0 = 1 mm because we want to
model growth starting at a very early age. In initial fits of the model,
the La0 was estimated, but did not change from the assumed value,
so for the results presented here this parameter was  fixed at 1 mm.
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Table 3
Continuous biphasic growth: recursive biphasic growth models. a is age, L (a) denotes the length at age a, W (a) is the weight at age a and p(a) is the proportion mature at
age  a. The age when 50% of the individuals are mature is t50, the age when 95% of the individuals are mature is t95 = t50 + ı95.

Model Parameters Recurrence equations References
GDD:Gompertz with
delayed Development

4
� =

{
W0, �0, k, Dm

} W(0)= W0 (T3.1) Thornley and France
(2007) pp. 190–192W (a + 1) = W (a) ∗{

1 + �0 exp
[
−Dm

(
a −

(
1 − exp (−ka) /k

))]}
(T3.2)

L (a) = (W (a) b−1)1/d(T3.3)
Quince–Boukal 7

�  =
{

L0, ˇ, c, q, r, t50, t95

} L(0)=L0 (T3.4)

p(a)=
{

1 + exp
[
− ln (19) ∗ (a − t50) / (t95 − t50)

]}−1
(T3.5)

L (a) =  (W (a) b−1)1/d(T3.6) Boukal et al. (2014)
Quince et al.
(2008a, b),  Lester
et al. (2004)

L (a + 1) ={[
L(a)(1−ˇ)d +

(
1 − �

)
cb−(1−ˇ)

][
1 + q−1

(
1 − ˇ

)
rp (a + 1)

]−1
}[(1−ˇ)d]−1

(T3.7)

6
�  =

{
La0 , Ga0+1, �, r, t50, t95

} L (a0) = La0 (T3.8) This study
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{
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CoR:  cost of reproduction p (a

L (a

Our CoR is similar to the VB-logK model, but is more plausi-
le because as the VB-logK implicitly modifies both anabolism and
atabolism at maturity, using the same parameter. The transition
epends on the allocation of energy to reproduction.

.3. Simple growth functions

The models we have reviewed are compared to the VB (von
ertalanffy, 1938) and the Richards (Richards, 1959; Schnute, 1981)
odels reparametrized in terms of L1 (the average length of the

oungest age well represented in the sample, a1) and L2 (the aver-
ge length of the oldest age well represented in the sample, a2)
Schnute and Fournier, 1980; Methot and Wetzel, 2013):

a =
[

L1 + (L2 − L1) ×
(

1 − exp(−k(a − a1))
1 − exp(−k(a2 − a1))

)]1/v
(9)

his is “expected-value” parametrization, i.e., two of the parame-
ers are equal to the values predicted by the model for ages a1 and
2 (Ross, 1970). The model reduces to the VB growth curve when

 = 1. For the VB curve, this parameterization was found to be best
n the sense that it exhibits “close-to-linear” behavior when using
east-square estimation, i.e., the estimators follow more closely the
symptotic assumptions of being unbiased, normally distributed,
nd with minimum variance, similar to a linear model (Ratkowsky,
986). This behavior helps improve convergence regardless of ini-
ial values (Ratkowsky, 1986). In addition, the parameters have
traightforward biological interpretation, as none is an extrapola-
ion beyond the data (if a1 and a2 are chosen to be within the data
ange; Schnute and Fournier, 1980).

. Methods

.1. Model fits

The models were fit using maximum likelihood. The objective
unction was composed of the length-at-age likelihood or a com-
ination of the length-at-age likelihood and the maturity-at-age

ikelihood.
Length-at-age likelihood:The observed length of fish i at age a

as assumed to be:
a,i = L̂a + ei (10)

here L̂a is the predicted average length at age a and ei is
 normally-distributed random variable ei∼N

(
0, �2

a

)
. The error,
1 + exp
[
− ln (19) (a − t50) / (t95 − t50)

]}−1
(T3.9)

= L (a) + Ga0+1 + �La0 − �L (a) − rp (a) L(a)3(T3.10)

which is assumed to be process error (i.e., variation in length at
age in the population, and not in the observations, e.g. measure-
ment error), was  modeled with the standard deviation as a linear
function of the average length at age:

�a = ˛� + ˇ�La (11)

The length-at-age likelihood component was the product of nor-
mal  distributions for each observation, each centered at the average
length predicted by the growth model and with variance equal to
�2

a . For ease of implementation, the likelihoods were transformed
into negative log-likelihoods and summed over all observations
(NLLage).

Maturity-at-age likelihood: The maturity-at-age likelihood was
assumed to be a Bernoulli distribution with parameter p modeled
following a logistic function of age p(a), which depends on two
parameters: t50, the age at 50% maturity, and t95 the age at 95%
maturity (Eqs. (T3.5) and (T3.9)):

� (x) = p(a)x(1 − p (a))1−x (12)

where p(a) is the probability of being mature at age a, x is a ran-
dom variable such that x = 0 for immature individuals, and x = 1 for
mature individuals. To reduce the correlation among parameter
estimates, we replaced the parameter t95 by t95 = t50 + ı95 . The
maturity-at-age likelihood was obtained by the product of Eq. (12)
over each observation. For ease of implementation, the likelihoods
were transformed into negative log-likelihoods and summed over
all observations (NLLmat).

The models that explicitly include the cost of reproduction
can be fit in three ways: (i) simultaneously to both the propor-
tion mature-at-age and size-at-age data, with all parameters free
(integrated estimation), (ii) only to size-at-age data with all the
parameters free (full estimation), and (iii) only to size-at-age data
with the reproductive parameters fixed to external values obtained
by fitting the proportion mature-at-age model to the mature-at-age
data only (external estimation). These three options are compared.
When using integrated estimation, the data components may  be
given different emphasis by multiplying the corresponding nega-
tive log-likelihood (NLLage or NLLmat) by a coefficient (�). In fisheries
stock assessment models, for example, the conclusions drawn can
depend heavily on the relative weight assigned to different data

components (Francis, 2011). We  explored this issue briefly using
the CoR model, by comparing the parameter estimates obtained
for the Tasiat Lake females data using different values of � for the
maturity-at-age data, while keeping � = 1 for the size at age. In the
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Table  4
Sample sizes (n), age (a, years) and fork-length (FL, mm)  ranges of fish sampled by lake, sex and maturity stage.

Females Males
Lake Latitude Longitude Juvenile Adult Unknown Juvenile Adult Unknown Total

Couture 60◦07′ N 75◦25′ W n 26 36 17 31 110
a  5–22 13–51 6–24 9–50 5–51
FL  166–718 276–956 187–562 256–945 166–956

McAlpine 66◦35′ N 102◦46′ W n 60 19 38 52 169
a  5–46 18.5–52 7–39 17–57 5–57
FL  134–810 520–878 190–660 444–790 134–878

Tasiat  59◦11′ N 75◦17′ W n 9 40 16 18 67 9 159
a  5–25 14–52 12–39 5–35.5 12–43.5 6–39 5–43.5
FL  173–690 450–800 490–764 173–630 437–743 174–583 173–800

Zeta  71◦06′ N 106◦33′ W n 19 36 15 128 198
a  5.5–47 23–65 5–39 19–62 5–65
FL  127–630 560–1100 126–347 512–1080 126–1100

Total  n 114 131 16 88 278 9 636

F lts (A)
f

c
t
t
w
o

u
Q
u

c
u
“
i
a
c

3

A

ig. 1. Scatterplot of fork length vs. age for males (M), females (F), juveniles (J), adu
our  lakes studied. n is the sample size.

ase of using the full estimation, the values of t̂50 and ı̂95 were used
o compute an “implied” likelihood, which we define as the NLL of
hose values, given the maturity-at-age data. The implied likelihood
as used to compare the plausibility of those values with the ones

btained using the integrated or the external estimation.
The recursive models were integrated using the Euler method,

sing daily time steps for the CoR and annual time steps for the
uince–Boukal and GDD models. The models were implemented
sing ADMB (Fournier et al., 2012).

When fitting the Quince–Boukal model, we  found that for some
ombination of parameters that included high values of  ̌ led to
nrealistic predictions for greater ages (the fish were predicted to
shrink”). We  thus implemented a version of the models that would
nclude a high penalty for “shrinking.” This was done by adding

 value to the objective function when L(a) <L(a-1). The value is
omputed using the posfun() procedure in ADMB (Fournier, 2015).
.2. Model comparison

We  compared different models fit to the same data sets, using
kaike Information Criterion for small sample sizes (AICc, Hurvich
 and animals with unknown maturity of Arctic lake trout Salvelinus namaycush the

and Tsai, 1989; Burnham and Anderson, 2002), which is based on
a modification of the AIC (Akaike, 1973). The most parsimonious
model is that with the lowest AICc, which is defined as:

AICc = −2lnl + 2m +
[

2m (m + 1)
n − m − 1

]
(13)

where lnl is the log-likelihood, m is the number of parameters, and
n is the sample size. We  also compared the separate likelihood com-
ponents (for size-at-age and maturity-at-age data) of models, when
appropriate.

3.3. Data sets

We fitted the models to eight data sets of males and females
from four unfished or lightly-fished populations of Arctic lake trout
S. namaycush (Table 4, Fig. 1). Fish were collected in 2002 and 2003
from Zeta Lake, Couture Lake, McAlpine Lake, and Tasiat Lake. All

of the lakes are mesoscale lakes (areas between 50 and 400 km2)
found in isolated regions of the Canadian Arctic and sub-Arctic. Lake
trout were sampled in July or August with gillnets, using multi-
mesh panels ranging, by 1/2” intervals, from 1 to 6”, plus 7 and
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” ones. This sampling approach was used to best sample all size
lasses in the lake. The fish were measured to the nearest millimeter
fork length) weighed to the nearest 0.1 g, and the sex and maturity
tage (juvenile or adult) were determined through internal exam-
nation. The maturity stage was unavailable for some specimens
rom the Tasiat Lake. Only the size-at-age data were used for those
sh. The sagittal otoliths were removed from the fish and embed-
ed and sectioned through the core prior to image enhancement
nd age determination. The accuracy of the age interpretations was
onfirmed using the bomb-radiocarbon method (Campana et al.,
008).

. Results

.1. Model fits of proposed models: CoR and VB log-L∞

We  examined the fits to data for Tasiat Lake females (Table 5) in
etail to gain insights about the two proposed models. Initially, the
alues for the maturity parameters were estimated externally from
he growth model by fitting the logistic model (Eq. (T3.10)) to the

aturity-at-age data only (Run 0, t̂50 = 12.868 years, ı̂95 =7.330
ears, NLLma = 8.628) and used to fit the CoR and the VB log- L∞
odels.
To first explore the variability-at-age assumptions, we  initially

t the CoR model only to size-at-age data with the maturity param-
ters fixed based on the fit of the logistic model (T3.9) to the
aturity-at-age data (external estimation), with three variabil-

ty options. The lowest AICc was obtained for the model with
onstant CV over ages (AICc = 712.677, Run 1, Fig. 2a, Table 5).

 two-parameter variability-at-age function led to a worse fit
AICc = 715.021, not in Table 5), but better than the model with con-
tant standard deviation (AICc = 720.299, not in Table 5). Based on
hese results, we chose to conduct the remaining the model fits
sing the constant CV assumption (˛� = 0; �a = ˇ�La).

For the CoR model, the size-at-age data had enough information
o estimate the 50% maturity parameter t50 (Run 2, AICc = 715.167,
able 5) conditioned on a fixed ı̂95 = 7.330. However the estimated

50 was slightly smaller (t̂50 = 12.470 years) than that estimated
sing maturity-at-age data only (t̂50 = 12.868 years). The negative

og-likelihood for the maturity-at-age data (NLLmat) implied for
un 2 was 8.559, almost the same as NLLmat when fitting only
o the maturity-at-age data (Run 0; NLLmat = 8.528). The model
onverged to a greater age at 50% maturity and a knife-edge tran-
ition between the two growth phases (t̂50 = 13.999, ı̂95 = 0.0004)
hen ı95 was also estimated (Run 3). This run had a better fit to

he size-at-age data (lower NLLage), but higher AICc (714.016), and
mplied an infinite NLLmat, which indicates the incompatibility of
hose parameters estimates with the maturity-at-age data. When
he CoR model was fit to both data components simultaneously
Run 4), the model fitted the size-at-age data about the same as
un 1, which had the maturity parameters estimated externally
NLLage = 351.767 vs. 352.005), and the maturity-at-age data about
he same as Run 0 (NLLmat = 8.679 vs. 8.528). The inclusion of the

aturity-at-age data in Run 4 led to a lower estimate of ı̂95 (6.129)
han the model that fit only to maturity-at-age data (ı̂95 = 7.330),
ut not as low as in Run 3 (ı̂95 = 0.0004), when only size-at-age data
ere used. The estimates from Run 4 represent the best compro-
ise between the two data components based on the implied data
eighting of the likelihood functions and sample sizes (Fig. 2c).

When the importance of the maturity-at-age data is increased
0 times (� = 10), the CoR model fits the size-at-age data almost as

ell as when no maturity data are used (Run 5, NLLage = 352.052,

able 5), and only slightly improves the fit to the maturity data
NLLmat = 8.530), in comparison with Run 4 (� = 1). When the weight
s increased to � = 100 times (Run 6, Table 5), at least for this data Ta
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Fig. 2. Fits (left panels) and residuals (right panels) of the CoR model to the Tasiat Lake female data. (a) Run 1, maturity parameters estimated externally (t̂ = 12.868,ı̂ = 7.3),
m timat
s imate
(

s
t
o
t

m
fi
H
t
(
e
(
t
p
a
i
b
c
t

odel fit to size-at-age data only with maturity parameters fixed to the external es
ize-at-age data only (t̂50 = 13.998, ı̂95 = 0.0004). (c) Run 5, maturity parameters est
t̂50 = 13.043, ı̂95 = 7.2).

et, the estimates of the maturity parameters were almost identical
o those obtained in Run 0, indicating that the external estimation
f the maturity parameters is equivalent to increase the weight of
he maturity-at-age data to about 100 times in the model.

The VB log-L∞ model fit to size-at-age data alone with fixed
aturity parameters (Run 7, AICc = 717.135, Table 5) had a worse

t than the equivalent CoR model (Run 1 AICc = 712.677, Table 5).
owever, unlike the CoR model, the VB log-L∞ model was  able

o estimate both maturity parameters using only size-at-age data
Run 8, AICc = 706.339, t̂50 = 9.420, ı̂95 = 4.874), without consid-
rably degrading the implied fit to the maturity-at-age data
NLLmat = 13.255). This fit, though, was obtained at very unrealis-
ic values for the growth parameters (Table 5) that allowed for the
eculiar shape of the curve (Fig. 3b). Convergence was problem-
tic, but was attained. The inclusion of the maturity-at-age data

n the VB log-L∞ model (Run 9) resulted in similar estimates for
oth the maturity and growth parameters as Run 8 (Fig. 3b and
), indicating that the size-at-age data provided information about
he growth transition (and therefore about the age at maturity if
50 95

es. (b) Run 3, maturity parameters estimated internally within the CoR model fit to
d internally within the CoR model fit to both size-at-age and maturity-at-age data

the model assumptions are correct). However, there is no guaran-
tee that this fit had indeed arrived to the global minimum because
the Hessian matrix for this run was  not positive definite.

The CoR model fitted only to the size-at-age data had a lower
AICc (Run 1 AICc = 712.677, Run 3 AIC = 714.016, Table 5, Fig. 2) than
the von Bertalanffy (Run 10, AICc = 733.419, Fig. 4, Table 5). How-
ever the Richards model fitted the data very similarly to the CoR
model (Run 11, AICc = 713.763, Table 5, Fig. 4). The VB log-L∞ model
with maturity parameters estimated internally by fitting only to
size-at-age data had the lowest AICc (Run 8, AICc = 706.339, Table 5,
Fig. 3b). The fits to the size-at-age data were worse for both the von
Bertalanffy (Run 10, NLLage = 362.376) and the Richards (Run 11,
NLLage = 352.22) models when compared to any of the CoR model
fits or the two  fits of the VB log-L∞ model when maturity param-
eters are estimated (Table 5). All fits of the CoR model showed no

patterns in the residuals (Fig. 2). The VB log-L∞ model had almost
the same residual pattern as the CoR model (Fig. 3). The VB curve, on
the other hand, had the poorest residual pattern of all fitted models
(Fig. 4).
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Fig. 3. Fits (left panels) and residuals (right panels) of the VB log-L∞ model to the Tasiat Lake females data. The left panels include the expected value of the size at age (black
thick  line), the variability of size-at-age (mean ± 1.96 standard deviation, sd, black thin line), the estimated proportion mature (gray thick line), the daily growth increment
(dashed line) and the L∞ at age (dashed red line). In the panels (a) and (b) the L∞ at age is shown as proportion of the L∞,2. (a) External estimation (Run 7): maturity parameters
e  data 

( o size
p  and m

4

n
t
s
t
e
d
fi
(
t
p

stimated externally (t̂50 = 12.868, ı̂95 = 7.3), and VB log-L∞ model fit to size-at-age
Run  8): maturity parameters estimated internally within the VB log-L∞ model fit t
arameters estimated internally within the VB log-L∞ model fit to both size-at-age

.2. Fits to the Quince–Boukal model

In initial explorations, we found that special attention was
eeded to fit the Quince–Boukal model because of the high correla-
ion among the parameters. We  used the Tasiat Lake females’ data
ets to explore the best way to fit the model. The two parameters of
he length (in mm)  and weight (in kg) relationship were estimated
xternally from the available data for all lakes (b̂ = 0.00551 and

ˆ = 3.107, s.e. (d̂) = 0.0156). The maturity-at-age parameters were

xed to the external estimates (Table 5). We  fixed the parameter q
relative cost of producing somatic tissue compared to reproductive
issue) to 1.0, as a reasonable assumption that the energetic cost of
roducing the two tissues is the same. Similarly to Boukal et al.
only with maturity parameters fixed to the external estimates. (b) Full estimation
-at-age data only (t̂50 = 9.420, ı̂95 = 4.9). (c) Integrated estimation (Run 9): maturity
aturity-at-age data simultaneously (t̂50 = 9.755, ı̂95 = 6.5).

(2014), we  initially fixed the parameter  ̌ (the allometric exponent
in the growth rate—weight relationship). The values we used were
to  ̌ = 2/3 (as assumed in the VB model, the CoR model and in the
model of Lester et al., 2004),  ̌ = 3/4 (as predicted by the Metabolic
Theory of Ecology, Brown et al., 2004; and estimated for Salvelinus
alpinus, Killen et al., 2010),  ̌ = 0.80 and  ̌ = 0.88 (average empirical
estimates for teleost fish, e.g., Clarke and Johnson, 1999; Killen et al.,
2010) and  ̌ = 1.036 estimated for Salvelinus fontinalis (Killen et al.,
2010. We  also attempted to estimate q and ˇ, but there was  no infor-

mation in the data on q to indicate a change from the assumed value
of 1.0. The parameters had to be estimated in phases, the estimates
from one phase were used as starting points for the next estima-
tion phase. The order of estimation that worked the best was: L0 in
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Fig. 4. Fits (left panels) and residuals (right panels) of the Von Bertalanffy (Run 10) and Richards (Run 11) growth models to the Tasiat Lake females size-at-age data.

Table 6
Parameter estimates and AICc of the Quince–Boukal model fit to the Lake Tasiat females data set for different assumption of ˇ, the allometric exponent of the growth rate-
weight  relationship. The fixed parameters were: the conversion factor between somatic and gonadic investment (q = 1), the intercept (b̂ = 0.00551) and exponent (d̂ = 3.107)
of  the fork length (in mm)—weight (in kg) relationship, the age (in years) at 50% maturity t̂50 = 12.868 and the difference (in years) of the age at 95% maturity and t50, ı̂ = 7.330.

Parameter estimates  ̌ = 2/3  ̌ = 3/4  ̌ = 0.8  ̌ = 0.88  ̌ = 1.04  ̌ estimated

 ̌ Allometric exponent in the growth rate-weight relationship 1.06 (0.21)
c  Coefficient in the allometric growth rate-weight relationship 25.02 (0.68) 10.41 (0.23) 5.63 (0.29) 2.11 (0.11) 0.31 (0.02) 0.23 (0.58)
r  Relative reproductive investment 0.15 (0.01) 0.23(0.02) 0.27(0.02) 0.34 (0.02) 0.52 (0.03) 0.56 (0.34)
Correlation between estimates of c and r 0.87 0.96 0.97 0.98 0.99 −0.99

10
0.
70

p
p
t
a
l
f
c
r

4

A
A
p
e
b
t
a
m

L0 length at age 0 0.00 (0.03) 

ˇ�Slope of the variability (Eq. (11)) 0.10 (0.01) 

AICc 717.2 

hase 1, c in phase 2, r in phase 3,  ̌ in phase 4, and the variability
arameter in the last phase. The model with the lowest AICc was
he one with  ̌ = 1.036 (Table 6). The worst AICc was  for the VB-like
ssumption of  ̌ = 2/3. The parameter estimates were highly corre-
ated. Curves with similar shapes along the range of the data were
ound with different combination of parameters. Nevertheless, the
urves had different implications for extrapolation beyond the data
ange (Fig. 5).

.3. Comparisons of fits of size-at-age data of all reviewed models

AICc was computed for the models fit to size-at-age data only.
ll models within 0–2 units from the best fitting model (lowest
ICc) are considered to have support from the data (Table 7). The
erformance of the simple models was very poor; the VB model, for
xample, was  within 9–35 AICc units of the best-fitting model. A

iphasic growth model was the best for all data sets. Of the models
hat are modifications of the basic VB model, VB log-L∞ with t50
nd ı95 estimated (7-parameter model) and the VB-S (6-parameter
odel) were selected the most (three times each).
.79 (9.41) 31.56 (8.86) 56.19 (7.89) 88.49 (6.83) 92.57 (32.36)
10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.09 (0.01) 0.09 (0.01)
7.6 706.7 705.8 705.2 707.5

Of the recursive biphasic growth models, the Gompertz Delayed
Development model was within two units of the best-fitting mod-
els for three data sets. The Quince–Boukal model was  fit with five
options for ˇ. The model with  ̌ = 2/3 was never selected and the
model with  ̌ = 3/4 was selected only once. The models with ˇ
larger than 0.8 were selected for two or more data sets. The mod-
els with large values of  ̌ that were implemented with a penalty
(PEN) for shrinking were still selected for two  data sets each. The
model with  ̌ estimated was  selected for three of the data sets.
We also attempted to estimate t50 and ı95 for  ̌ = 0.8. This model
was selected as the best by four data sets. Because of high correla-
tion among parameters, several starting points must be used until
arriving at model convergence. The CoR model was  not selected
for any of the data sets to be within 2 AICc units of the best-fitting
model.

The estimates of ˇ, the allometric exponent in growth rate-

weight relationship in the Quince–Boukal model ranged from 0.63
to 1.14 (Table 8). For lakes for which this model was selected among
the best-fitting ones, the estimates were ˆ̌

 = 1.04 (Couture Lake
females and Tasiat Lake females) and ˆ̌

 = 1.14 (Zeta Lake males).
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Table 7
Delta AICc (difference between AICc of the best fitting model and the model in each line) for the models fit only to size-at age data. The list of models and acronyms are in
Tables 2 and 3. PEN–penalties. The parameter estimates for the proportion mature curve are plotted in Fig. 7.

Lake Couture Couture McAlpine McAlpine Tasiat Tasiat Zeta Zeta
Sex  M F M F M F M F

n 48 62 90 79 94 65 143 55
Min  AICc 549.5 731.6 1040.5 898.7 1000.9 705.2 1584.9 625.6

Model  Type NLL model with lowest AICc 266.3 361.5 513.8 442.8 494.0 348.3 787.2 305.9
Number of parameters

VB  4 18 9 11 19 35 28 17 12
Richards 5 16 10 3 5 8 9 19 6
VB-hyperL∞ 5 21 11 3 13 16 13 40 7
VB-hyperK 5 21 11 3 13 16 13 40 7
VB-damped 5 21 11 3 13 16 13 40 7
VB-S  6 5 6 1 0 9 4 0 12
VB-logK 6 5 8 3 4 0 4 0 9
VB  log-L∞ t50and ı95 fixed 5 9 7 3 13 12 12 0 7
VB  log-L∞ t50and ı95 estimated 7 0 3 7 18 11 1 2 12
GomptezDD 4 11 2 4 2 5 8 5 1
Quince–Boukal  ̌ = 2/3, t50 and ı95 fixed 4 18* 5* 9* 12 11 12 46 7
Quince–Boukal ˇ  = 3/4, t50 and ı95 fixed 4 30* 3 38* 17 4 2 17 19
Quince–Boukal  ̌ = 0.8, t50 and ı95 fixed 4 16 2 13 22 3 2 13 12
Quince–Boukal  ̌ = 0.8 PEN, t50 and ı95 fixed 4 16 2 393 558 3 2 13 134
Quince–Boukal  ̌ = 0.8, PEN t50 and ı95 est 6 14 6 0 5 7 1 0 0
Quince–Boukal  ̌ = 0.88, t50 and ı95 fixed 4 16 1 15 31 2 1 8 17
Quince–Boukal  ̌ = 1.04 4 15 0 21 50 4 0 1 28
Quince–Boukal  ̌ = 1.04 PEN 4 100 359* 1668* 2650* 4 0 1 1542
Quince–Boukal ˇ  estimated 5 18 2 9 12 4 2 0 9
CoR  t50 and ı95 fixed 4 17 6 9 6 5 8 24 5
CoR  t50 and ı95 estimated 6 22 10 8 5 7 9 5* 8*

* Indicates models for which the Hessian matrix does not appear to be positive definite.

Table 8
Estimates of ˇ, the allometric exponent of the growth rate-weight relationship, for the Quince–Boukal model with the maturity parameters fixed to the values estimated
externally by fitting a logistic model to the maturity-at-age data.

Correlations of the estimates of  ̌ with the following parameter estimates

Lake Sex ˆ̌
 se

(
ˆ̌
)

L0 c r ˇ�

Couture M 0.99 0.16 0.89 −1.00 0.99 0.00
Couture F 1.04 0.15 0.94 −1.00 0.98 0.00
McAlpine M 0.63 0.03 0.00 −1.00 0.89 0.00
McAlpine F 0.64 0.02 0.00 −0.99 0.74 0.00
Tasiat  M 0.88 0.11 0.97 −1.00 0.98 0.00

0.99 −1.00 1.00 −0.02
0.86 −1.00 0.94 0.00
0.00 −0.99 0.95 0.00
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Fig. 5. Fits of the Quince–Boukal model with different assumptions about the
Tasiat  F 1.04 0.26 

Zeta  M 1.14 0.05 

Zeta  F 0.67 0.03 

n those runs, the correlation among parameter estimates was
xtremely high.

.4. Integrated fits

We  compared the fits of each data component to three models
hat are suitable for either integrated or external estimation (CoR,
B log-L∞ and Quince–Boukal  ̌ = 0.8, Table 9) to assess whether
e were better off with the integrated estimation, rather than the

xternal estimation. Examples of the fits of those three models are
hown in Fig. 6. The NLLage in the integrated estimation was  smaller
n most cases for any of the three models than the external estima-
ion. The difference in NLL units, however, was larger than one for
ne (CoR), three (VB log-L∞), and four data sets (Quince–Boukal

 = 0.8). These improvements in the fit to the size-at-age data came
t a minimal cost to the fits to the maturity-at-age data: the NLLmat

f the integrated fit was different by less than one unit for seven of
he eight data sets, for any of the models. Performing the integrated
stimation improved the size-at-age fits without compromising the
aturity-at-age fits. However the estimation of growth, with the

aturity parameters fixed at values estimated externally provides

bout the same results, with a few exceptions. For example, the fit
f the CoR for Couture Lake males and the Quince–Boukal  ̌ = 0.8
or the McAlpine Lake males and females, the integrated estima-

parameter ˇ, the allometric exponent of the growth rate-weight relationship, to
the  Tasiat Lake females size-at-age data.
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Table  9
Negative log-likelihood (NLL) for the maturity-at-age and size-at-age data (NLLmat and NLLage) and delta AICc for the integrated models fit simultaneously to size-at-age and
maturity-at-age data. For comparison, the NLLmat proportion mature model (Run 0 in Table 5) is also included. CoR is the Cost of Reproduction model, VB log-L∞ is the Von
Bertalanffy Logistic- L∞ model. m is the number of parameters, n is the sample size.

Lake Couture Couture McAlpine McAlpine Tasiat Tasiat Zeta Zeta

Model m Estimation Sex M F M F M F M F
n  48 62 90 79 94 65 143 55

CoR  6 Integrated Delta AICc 8.2* Infinity* 6.5* 0 2.4 6.7* 13.8 0
NLLmat 12.0 Infinity 34.0 30.4 21.9 8.7 0.6 7.6
NLLage 278.8 364.2 520.6 448.0 498.7 351.8 794.0 311.0

6  Full NLLage 270.9 360.6 516.5 445.2 497.3 346.7 786.4 309.8
NLLmat implied 23.4 Infinity 62.4 Infinity Infinity Infinity Infinity Infinity

4  External NLLage 278.8 364.5 520.7 448.1 498.9 352.1 800.1 310.7
VB  log-L∞ 7 Integrated Delta AICc 0 3.8 0 7.3 8 2.3* 0 2.6

NLLmat 12.3 7.7 33.9 30.4 22.4 10.8 0.3 7.6
NLLage 273.0 362.4 516.2 450.5 499.8 346.2 786.0 311.0

7  Full NLLage 266.3 359.3 516.3 446.4 497.4 345.2 786.1 310.0
NLLmat implied 161.9 56.8 33.9 30.4 56.3 13.3 0.3 8.2

5  External NLLage 273.7 364.0 516.2 450.5 501.1 353.0 787.3 310.6
Quince–Boukal  ̌ = 0.8 6 Integrated Delta AICc 6.6 0 8.7 73.2* 0 0 3.2 0.5

NLLmat 12.4 7.1 34.7 44.5 21.8 8.9 0.7 9.4
NLLage 277.6 362.4 521.0 470.5 497.6 348.2 789.0 309.0

6  Full NLLage 274.5 361.9 513.8 445.4 497.5 346.6 786.3 305.9
NLLmat implied 176.7 29.8 Infinity 292.7 22.6 33.1 19.7 Infinity

4  External NLLage 278.4 362.5 712.6 724.1 497.6 349.0 794.6 375.4
VB  4 NLLage 279.5 365.8 521.8 454.5 513.9 362.4 796.9 314.6
Richards 5 NLLage 277.3 365.2 516.3 446.5 498.9 351.4 796.9 310.2
Proportion mature 2 NLLmat 12.0 7.0 33.9 30.4 21.8 8.5 0.0 7.6

Min  AICc 587.5 752.4 1115.7 970.0 1052.0 727.7 1588.0 650.0

* Indicates models for which the Hessian matrix does not appear to be positive definite.

Fig. 6. Fits of the CoR, VB log-L∞ and Quince–Boukal with  ̌ = 0.8 models using integrated estimation to two data sets. (a) Fits to the Couture Lake Males data, the model with
t el with
u

t
t
c
b
b

he  lowest AICc was  the VB log-L∞ (b) Fits for the Zeta Lake Females data, the mod
nits.

ion allowed for a much better fits to the size-at-age data than
he external estimation. The integrated estimation may  be the best

ompromise between the modeling of the two biological processes,
ut the separated estimation may  provide similar results and may
e easier to implement.
 the lowest AICc was CoR, but the Quince–Boukal with  ̌ = 0.8 was within 0.5 AICc

Of the three models fit using integrated estimation, the
Quince–Boukal  ̌ = 0.8 was  the one that fitted best (less than 0.5

AICc units of difference to the best fitting model) for most data
sets (4), followed by the VB log-L∞ (3) and the CoR (2) models.
Growth parameters estimates for the VB log-L∞ model were fre-
quently unrealistic to have the required shape (e.g., very low value
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ig. 7. Estimates of t50 (bottom symbols) and t95 (top symbols) obtained from the
odels fit to size-at-age data (full estimation) or size-at-age and maturity-at-age da

ransition was  estimated, only one symbol was  drawn as t50 = t95.

or t0 and very high values for L∞2; in Fig. 3b and c, the L∞ at age is
raphed relative to L∞2).

The results from the full estimation (all parameters estimated
rom model fits to only size-at-age data) were compared to the
xternal estimation of the maturity-at-age parameters. For most
ata sets and for the three models, the NLLage was smaller for the full
stimation, as expected (Table 9). However, only for Quince–Boukal

 = 0.8 model, the full estimation runs had the lowest AICc more fre-
uently than the external estimation runs (Table 7), suggesting that
here is little information indicating that the change in growth rates
s caused by something other than maturation. The implied fit to the

aturity-at-age data with those estimates of maturity parameters
egraded considerably, as shown by larger NLLmat, which may  even
e infinite in some cases. Using the external estimation, the CoR
odels tends to estimate knife-edge transitions (t95 equal to t50) for
ost cases (Fig. 7), and both the VB log-L∞ and the Quince–Boukal

 = 0.8 models tend to estimate abrupt transitions in several cases.
his indicates that the size-at-age data alone do not have enough
nformation to estimate the ı̂95 (and thus the age at 95% maturity).

The estimates of the maturity parameters from the integrated
odels in general corresponded to slightly narrower maturity-at-

ge curves than the estimates coming from maturity-at-age data
lone, indicating that while the maturity-at-age data inform growth
stimation, given that the model is correct, the size-at-age data also
ave some information about the maturity process. For example,

t is noteworthy that for the Zeta Lake males data, which does not
ave enough information in the transition age between immature
nd mature (Fig. 1), the estimate of t50 from Run 3 (CoR) and from
uince–Boukal models get closer to that estimated for the females
f the same lake, that have a more balanced sampled size between
ature and immature fish (Fig. 7). Also, the estimates of the matu-

ity parameters from of the Quince–Boukal models fit using the
ntegrated estimation tend to be more similar among lakes than
hose obtained from the other models, including the stand-alone

aturity at age model (Run 0).

. Discussion

To the best of our knowledge, we have reviewed all published

iphasic growth models and proposed two new models, the von
ertalanffy logistic-L∞ (VB log-L∞) and the Cost of Reproduction
CoR) models. Furthermore we implemented all continuous models
nd fitted them to Arctic lake trout data sets for which size-
tic model fit maturity-at-age, the CoR, VB log-L∞ and Quince–Boukal with  ̌ = 0.8
tegrated estimation) for all lakes, for males (M)  and females (F). When a knife-edge

at-age and maturity-at-age data were available, using maximum
likelihood. In general, we found that a biphasic model that simulta-
neously represented the growth of adult and juvenile animals was
better than a simple growth model such as the VB or the Richards,
which were between 3 and 35 AICc units from the best models fit
to size-at-age data only. The biphasic models that explicitly incor-
porate the reproduction process fitted the data best. Integrated
estimation using both size-at-age and maturity-at-age data was the
best compromise between modelling the two processes. Neverthe-
less, external estimation produced similar results in most cases,
and it may  be easier to implement, especially when no maturity-
at-age data were collected in addition to size-at-age data. Biphasic
growth has been shown to exist for Arctic lake trout by other
authors. Quince et al. (2008b) showed that a biphasic growth model
provided better fits to Arctic lake trout female growth. We  chose
in this review to fit all models using a normal likelihood. How-
ever there are indications that the Arctic lake trout shows resource
polymorphism, with some individuals achieving much larger sizes,
because of a cannibalistic diet (Blackie et al., 2003). For exam-
ple, in the unfished Zeta Lake, a few animals with extreme sizes
were found. Further studies should investigate either use of robust
likelihood functions when fitting growth models (e.g., Chen and
Fournier, 1999) or the explicit inclusion of growth polymorphism
in the model.

We  were able to fit all models. However, it was more difficult
to achieve convergence for some models (e.g., the Quince–Boukal
model) because of high correlation among parameters, and other
models converged to estimates that were not biologically inter-
pretable, such as the VB log-L∞ model.

The Quince–Boukal model was  the one that produced the best
fits in general. This model is based on first principles of alloca-
tion of energy to growth and reproduction and takes into account
that both the allometric exponents in growth rate–weight (ˇ) and
length-weight (d) may  differ among species (as opposed to the com-
mon  assumptions of  ̌ = 2/3 and isometric growth d = 3). Although
one can attempt to estimate  ̌ as we have done here, there is lit-
tle information on the size-at-age data to estimate this parameter,
and size-at-age curves with different values for  ̌ may  look indis-
tinguishable, given different combinations of the other parameters

(see Fig. 2 in Boukal et al., 2014). Both  ̌ and d can be fixed to external
values derived from metabolic studies and length-weight studies,
respectively. Uncertainty on those parameters may  be incorporated
as prior distributions (in Bayesian estimation) or as penalty func-
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ions (in likelihood estimation). In the data we used to illustrate the
odel fits, the value for  ̌ was key to the model fits, the model was

est supported by the data for rather higher values of ˇ. As shown
y Boukal et al. (2014), the implication of different values for  ̌ on
he species fitness as measured by the lifetime reproductive invest-

ent is dramatic. By knowing  ̌ and the optimal evolutionary age
t maturation (that can be assumed to be t50), one also knows a
orresponding natural mortality coefficient.

The MLE  value of  ̌ from the fit to the Quince–Boukal model
anged toward larger values (average  ̌ = 0.879) similar to what
as estimated for other species of the same genus using metabolic

tudies (  ̌ = 0.748 for Salvelinus alpinus and  ̌ = 1.036 for Salvelinus
ontinalis, Killen et al., 2010). However, the uncertainty of the esti-

ates is high for some data sets. The  ̌ parameter of Lake Tasiat
emales, for example, has a 95% confidence interval of 0.648–1.476,
hich includes about the whole range for teleost fish (69 species

n Fig. 1b of Clarke and Johnson, 1999). Nevertheless, the greater ˇ
stimates are compatible with lower natural mortality and greater
ongevity (Quince et al., 2008b; Boukal et al., 2014), as shown by
he Arctic lake trout. This agreement is another indication of the
onsistency of the best growth model with the general life history
f the species.

The recursive models were implemented using a differ-
nce approximation to the differential equation. While the
uince–Boukal model was implemented with an annual time step,

he CoR model was implemented in a daily step, which makes it
 computationally intensive procedure. It would be preferable to
 have an algebraic solution to the differential equation, but we
re not aware of its existence. The computational demands are
ot a concern for traditional growth modelling using current com-
utational resources, but more sophisticated analysis such as the
igh multi-dimensional integrals needed to integrate age-length
ata with growth increment data obtained from tagging may  be
roblematic (Laslett et al., 2002; Aires-da-Silva et al., 2015). Con-
ergence was also problematic for some data sets, and further
eparametrization may  be required to improved convergence.

.1. The proposed models

In addition to the models from the literature, we  have proposed
wo growth models that take the cost of reproduction into account.
ne model is based on first principles and the other model is based
n prior performance, but both are based on a modification of the VB
odel. Both include a logistic maturity function to model the tran-

ition from a juvenile growth phase to an adult growth phase. These
rowth models usually perform better than the von Bertalanffy and
ichards growth models for the eight data sets that we evaluated,
ased on AICc. We  expect similar performance for other species that
how changes in growth rates when individuals become mature
nd expend energy on reproduction.

The VB log-L∞ model most often performed better than the CoR
odel. However, the parameters of the VB log-L∞ model were often

nrealistic. Unrealistic parameters are not necessarily a concern if
he growth model is simply used to describe mean length at age,
nd no biological meaning is inferred from the parameter estimates.
ealistic parameter values may  also be desirable if extrapolating
utside the range of the data. Given the similarity of the two models’
erformances, we recommend the CoR model because it is based
n first principles and the parameter estimates are more realistic.

We assumed that the length at age 0 days is 1 mm in the CoR
odel. Estimating this parameter is similar to t0 in that it occurs at

n age lower than there are data and can be thought of as a conve-

ient way to add flexibility into the model without adding meaning.
e found that estimating this parameter for one data set did not

mprove the likelihood. Future research should investigate estimat-
ng this parameter. Alternative parameterizations may  improve the
esearch 180 (2016) 31–44 43

estimability, for example, by starting the model at a greater older
age close to the youngest observed age (similarly to Schnute and
Fournier (1980) parameterization of the von Bertalanffy growth
function).

5.2. Reproductive biology information

The growth curves that include the cost of reproduction require
information on aspects of reproductive biology. In this paper, we
used the maturity at age and approximate weight (length cubed) as
a proxy for the cost of reproduction in the CoR model and the matu-
rity at age multiplied by a constant in the Quince–Boukal model.
When all parameters were estimated based only on the size-at-age
data, the estimates of the growth transition parameters (proportion
mature at age) were frequently more abrupt and sometimes incom-
patible with the maturity-at-age data (as shown by the implied
likelihood NLLmat of those values). This incompatibility may  indi-
cate that maturity-at-age data do not appropriately account for all
the cost of reproduction, which may  also include energetic cost
with behavior or larger gonads. The model fit might be improved
if other aspects, such as the frequency of spawning and fecundity,
are also taken into consideration. We  suggest that sampling pro-
grams for growth information should always include sampling for
information on reproductive biology so that these growth curves
can be applied. For most cases, there was  not much difference
between models that estimated the maturity curve externally from
the growth model or internally in the growth model, when using
integrated estimation. We expect that this will be the case in most
applications since maturity sampling should usually be adequate to
precisely estimate the maturity-at-age curve. Frequently, however,
the growth and reproduction studies are not done simultaneously,
and a maturity-at-length, rather than maturity-at-age, curve is
obtained. The transformation of length into ages will need to be
incorporated in the likelihood to fit a biphasic model, such as those
proposed here. In this case, an integrated estimation approach
might be more efficient. Further research should include applica-
tion of these models to a wider range of data sets to determine if
their superior performance is general or case specific.

6. Conclusions

The biphasic growth models, in particular those that explicitly
include the reproductive process in the growth dynamics, fitted the
data better than the simple growth models. This improvement can
translate into higher-quality scientific advice when these results
are used in stock assessments. In the context of fisheries stock
assessment, the models reviewed in this paper can be used in two
ways: (i) in highly-structured stock assessments, the models can
be used to have a more precise estimate of growth and therefore
improve the interpretation of length-composition data, which are
more frequently available than age-frequency data; (ii) in assessing
data-poor stocks, by using the methods related to the “life-history
invariants” (e.g., Prince et al., 2015). The improved performance
of the growth models that include cost of reproduction might be
understated when they are used in stock assessment models that fit
to length-composition data. In these stock assessment models, the
fit of the expected length-composition data to the observed length-
composition data, particularly for greater lengths, influences the
estimates of absolute abundance and fishing mortality (Maunder
and Piner, 2015). Therefore, it is important to get the growth curve
correct for the greater ages. Unfortunately, there is often a lack of

information at greater ages. Consequently, a slight improvement in
the fit to the age-length data at greater ages due to the inclusion
of the cost of reproduction may  be influential for stock assessment
results. For this reason, we  believe that taking the cost of reproduc-
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ion into consideration is valuable for growth curves used in stock
ssessment models. Future research should investigate the sen-
itivity of management quantities, derived from integrated stock
ssessment models, to these growth curves compared standard
rowth curves for commercial fish stocks. Recent attempts to assess
ata-poor stocks have included the use of life history ratios (or

ife-history invariants) to take the most information from length-
requency data (Prince et al., 2015; Hordyk et al., 2015a,b), which
re typically the most inexpensive data to obtain when sampling
mall-scale fisheries, for example. Those life-history invariants are
ased on the parameters of the von Bertalanffy growth curve,
hich we have shown to be the poorest fitting model, based on
ICc, in our study. Some of the reviewed models explicitly include

he cost of reproduction and can be used to derive life-history
nvariants, and potentially improve the predictability of the meth-
ds based on such information. When assuming that a population
as evolved to produce the maximum life-span reproductive out-
ut, the Quince–Boukal model explicitly connects metabolic rates,
xponent of the length-weight relationship, optimal age at repro-
uction, and natural mortality (and thus longevity). As such, the

ife-history invariant methods can be improved to include auxiliary
nformation such as estimates of  ̌ derived from metabolic studies.
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