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Inferring age from otolith measurements: a review
and a new approach

R.I.C. Chris Francis and Steven E. Campana

Abstract: In 1985, Boehlert (Fish. Bull. 83: 103–117) suggested that fish age could be estimated from otolith measure-
ments. Since that time, a number of inferential techniques have been proposed and tested in a range of species. A re-
view of these techniques shows that all are subject to at least one of four types of bias. In addition, they all focus on
assigning ages to individual fish, whereas the estimation of population parameters (particularly proportions at age) is
usually the goal. We propose a new flexible method of inference based on mixture analysis, which avoids these biases
and makes better use of the data. We argue that the most appropriate technique for evaluating the performance of these
methods is a cost–benefit analysis that compares the cost of the estimated ages with that of the traditional annulus
count method. A simulation experiment is used to illustrate both the new method and the cost–benefit analysis.

Résumé : Boehlert a indiqué en 1985 (Fish. Bull. 83: 103–117) que l’âge des poissons pouvait être déterminé à partir
de mesures des otolithes. Depuis lors, plusieurs techniques d’inférence ont été proposées et évaluées sur une gamme
d’espèces. Une revue de ces techniques montre que toutes sont soumises à au moins un de quatre types de biais.
De plus, toutes cherchent à assigner un âge à des poissons individuels, alors que le but est l’estimation des variables
démographiques, en particulier la proportion d’individus à chacun des âges. Nous proposons une nouvelle méthode
flexible d’inférence basée sur l’analyse des mélanges qui évite ces biais et qui fait un meilleur usage des données.
Nous croyons que la technique la plus appropriée pour évaluer la performance de ces méthodes est une analyse de
coûts–bénéfices qui compare le coût des âges estimés avec celui de la méthode traditionnelle du dénombrement des
annulus. Une expérience de simulation permet d’illustrer tant la nouvelle méthode que l’analyse coûts–bénéfices.

[Traduit par la Rédaction] Francis and Campana 1284

Introduction

Around the world, the ages of close to a million fish are
determined each year using otoliths, largely in support of
harvest calculations (Campana and Thorrold 2001). Fish age
is generally determined after initial preparation of the otolith
(such as embedding and thin sectioning) followed by micro-
scopic examination and counts of the annual growth zones
(annuli). The preparation process is often time consuming,
while the interpretation of the annuli requires skilled techni-
cians. As a result, the process of age determination is rea-
sonably expensive. To minimize time and expense, many
agencies take small subsamples of catches or populations for
age estimates, producing age–length keys that are used to in-

fer the age composition of the remainder of the catch based
on a larger sample of simple length measurements (Kimura
1977).
Although age–length keys rely on the relationship between

age and fish length, an alternative approach is to take advan-
tage of the well-documented proportionality between the size
of the otolith and both the size and the age of the fish
(Templeman and Squires 1956). Although the sizes of the
fish and the otolith are correlated, otolith size tends to be
somewhat more correlated with fish age than is fish length
(Boehlert 1985). Thus, in principle, otolith size can better be
used to infer fish age than can fish length. A number of stud-
ies have statistically related various measurements of otolith
size (e.g., otolith weight, length, area) to the annulus-based
age and then used the resulting relationships to estimate the
age composition of the remaining, unaged fish (Boehlert
1985; Pawson 1990; Worthington et al. 1995a). A common
feature shared by this approach and that of the age–length
key is that both require two samples: a “calibration” and a
“production” sample. The calibration sample (sometimes
called the training sample) is used to define a procedure for
estimating age, and this procedure is then applied to all fish
in the production sample (sometimes called the test sample).
The ages of fish are known in the calibration sample but not
in the production sample. The motivation for this two-stage
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approach is simple — the first stage involves expensive
annulus-based age determinations, while the second stage
does not.
An obvious question is why is so much time and money

invested into age determinations? By far the most common
products of age determinations are catch proportions at age
for use in stock assessments. The second most common out-
puts would be growth parameters. Thus, the goal is nearly
always to estimate the growth or mortality parameters of a
fish population, not to estimate the ages of individual fish
(Pauly 1987). Indeed, it appears that there is little point in
using otolith measurements to assign ages to individual fish
because the probability of correct assignment is often quite
low. However, the same suite of measurements could be
used to provide more accurate estimates of population pa-
rameters. Later, we will argue that the literature has placed
too much emphasis on individual age estimation and too lit-
tle on the estimation of population parameters associated
with age. One consequence of this is that techniques that di-
rectly estimate proportions at age (without assigning ages to
individual fish) have been overlooked. Ironically, most of the
published techniques that we reviewed assigned individual
ages but then went on to calculate proportions at age. In
many cases, this has led to inappropriate methods for evalu-
ating the power of using otolith measurements.
In this paper, we start by discussing the observations that

have provided a rationale for using otolith measurements to
infer age and then describe the various types of bias that can
occur. Next, we critically review the published methods for
inferring age based on otolith measurements and then pres-
ent a new approach for directly estimating proportions at
age. This new method takes full advantage of the informa-
tion in both the calibration and production sample but avoids
the asymptotic bias that characterizes other methods. We
conclude with a review of methods of performance evalua-
tion, suggesting that cost–benefit analyses are a necessary
part of any evaluation, as demonstrated by a simple illustra-
tive example.
Throughout this paper, we will mostly treat age as a dis-

crete variable. That is, a reference to fish of age 2 will mean
fish from the 2+ age class (unless otherwise stated). There
are circumstances when it might be better to think of age as
continuous (e.g., when estimating growth parameters using
samples gathered throughout the year). However, in the liter-
ature that we are reviewing, people were almost always inter-
ested in discrete ages only. This is also true throughout
fisheries science. Some of the methods that we review below
are easily applied to continuous ages but others are not.
In referring to various measurements, we will use the no-

tation W for weight, L for length, w for width, and T and
thickness and use a subscript to define what is being mea-
sured: “O” for the otolith and “F” for the fish body. The
most used of these measurements will be otolith weight (WO)
and fish length (LF).

Why should otolith measurements predict
age well?

In this section, we describe, and comment on, two types
of observations on fish growth that provide what Secor and

Dean (1989) called “a biological rationale for the use of
otolith size and fish size as predictors in age estimation”.
The first type of observation is what we shall call the

Templeman–Squire relationship (TSR), which is that among
fish of the same length, the older fish tend to have bigger
otoliths. The first record of TSR that we are aware of was
for haddock (Templeman and Squires 1956), but it has since
been reported for many species (e.g., Reznick et al. 1989;
Wright et al. 1990; Fossen et al. 2003). In these observa-
tions, otolith size was usually measured as WO, but other
otolith dimensions have been used. A common way of char-
acterising TSR is to say that, among fish of the same length,
slow growers tend to have heavier otoliths than fast growers.
It is important to specify “of the same length” here because
when we compare fish of the same age, it is the fast growers
(i.e., the large fish) that have the heavier otoliths. That is,
within-age-group correlations between WO and LF are usu-
ally positive (Pawson 1990; Fletcher and Blight 1996;
Cardinale et al. 2000).
The second type of observation is that of continuing growth

of the otolith. Many authors have noted that as fish grow
older, growth in LF , LO, and wO all slow down, but TO and
WO keep increasing because of continued deposition of ma-
terial on the medial surface of the otolith (Blacker 1974;
Boehlert 1985; Anderson et al. 1992). This growth pattern
explains TSR in older fish. It also explains why WO has been
shown to be by far the most important of otolith measure-
ments for inferring age. All studies that we have seen have
used either WO alone or a combination of WO and other mea-
surements (including, sometimes, body measurements like
LF). When several otolith measurements are compared with
age, the highest correlation is usually with WO (Boehlert
1985; Fossen et al. 2003).
What inference should we take from these observations?

The common view seems to be that WO is a promising po-
tential predictor of age, but this may be going too far. Con-
sider a typical plot of WO and LF , which clearly illustrates
TSR (Fig. 1). For this population, fish of length 600 mm are
very likely to be of age 3 or 4, and we can decide, with rea-
sonable confidence, which age they are if we know their WO.
But it is important to note that we make this inference about
the age of the fish using both WO and LF , not with WO alone.
Thus, what the above observations suggest is that the combi-
nation of WO and LF contains more information about age
than does LF alone. It does not necessarily imply that WO by
itself is a good predictor of age. In fact, it does not even im-
ply that WO is a better predictor than LF (although this will
often be true). To illustrate this point, we need to make a
definition.
A separation index is one way of quantifying how well

we might be able to infer age. It is defined for each pair of
adjacent ages and measures how much overlap there is be-
tween them. For example, for the measurement WO at ages
A and A + 1, the separation index SA,A+1 is defined by
SA,A+1 = (µ A+1 – µ A)/σA A, +1, where µ A is the mean WO for
fish of age A and σA A, +1 is the pooled standard deviation of
WO for ages A and A + 1. (Of the two slightly different
ways that people have calculated σA A, +1, [ ( )]0.5 2 2 0.5σ σA A+ +1
and 0.5(σA+1 + σA), the former seems better on theoretical
grounds (Snedecor and Cochran 1980), but the difference is
probably not often important.) We can convert the separa-
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tion index into an approximate probability of correct age
estimation using the formula Pcorrect = 2F(S/2) – 1, where F
is the cumulative distribution function of the standard nor-
mal (the formula is exact if we assign an age to each fish
according to which µA its WO is closest to and if we assume
normal distributions with equal variances and no variation
with age in either the proportions at age or the separation
index). The larger the separation index, the higher Pcorrect
is, and thus the better the predictor (Fig. 2).
The separation indices in Table 1 show that WO is not al-

ways a better predictor than LF (it is not for the lowest ages
for either stock). Further, and more importantly, for both cod
(Gadus morhua) stocks, the two predictors combined are
better than either one singly. (The combined separation in-
dex is calculated using that linear combination of WO and LF
that, according to a linear discriminant analysis, best sepa-
rates the two age groups.) These results support the view of
Brander (1974), who said “a two-dimensional separation, us-
ing otolith weight as well, may give a better separation of
ages than [body] length alone”.

Four types of bias

We now define four different ways in which estimated
proportions at age can be biased. It should be noted that bias
in an estimator is not necessarily a bad thing. For example, a
precise estimator with small bias may be preferable to an un-
biased but imprecise estimator. However, asymptotic bias
(i.e., bias that does not tend to zero when sample sizes be-
come large) is a most undesirable property in an estimator
(this is called inconsistency in the statistical literature; Stuart
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Fig. 1. Otolith weight against fish length for known-age wild Ice-
landic cod. Each point represents one fish and the plotting symbol
identifies its age. The ellipses are 95% confidence regions for
bivariate normal distributions fitted to the data for each age.

Fig. 2. Illustration of four values of the separation index S. In
each panel, the thin lines denote the distributions (with means µ1
to µ 4) of some predictor (like otolith weight (WO) or fish length
(LF)) at ages 1 to 4, and the thick line denotes the combined dis-
tribution. Pcorrect is the approximate proportion of ages correctly
estimated with the given value of S.



and Ord 1991). Maximum-likelihood estimators may some-
times be biased but are never asymptotically biased. We will
show that all the estimation methods that we review below
are subject to asymptotic bias in at least one of our four
types.
Before defining these biases, it is useful to describe a sim-

ple model, with just one predictor of age (WO, say). Suppose
we have a fish population with ages between 1 and n in
which the proportion at age A is pA and, for fish of age A,
WO is normally distributed with mean µA and standard devi-
ation σA. From a calibration sample, we can easily make es-
timates of these parameters: �pA, �µ A, and �σA. We measure
WO for each fish in a production sample and want to assign
an age to each fish in this sample. To do this we need a “cut-
ting rule”, which is based on our parameter estimates �pA,
�µ A, and �σA and which cuts the WO distribution into n parts
and assigns an age to each fish according to which part WO
lies in. Most of the methods that we review use simple cut-
ting rules that are defined by a set of n – 1 cutoff points,
c1,..., cn–1. A fish is assigned to age 1 if WO < c1, to age A if
cA < WO < cA+1, and to age n if WO > cn–1.
So what is the “best” cutting rule for our simple model?

There are (at least) three answers to this question, depending
on how we want to define “best”. The “midpoint rule”, for
which cA = 0.5( � �µ µA A+ +1) (Fig. 3a), is best only in the sense
of being the simplest rule. It is a poor rule because it ignores
the other parameters, �pA and �σA. The cutting rule provided
by discriminant analysis is best in the sense that each fish is
assigned the age that is most likely, given the calibration
sample. We call this the MLA (most likely age) rule. For lin-
ear discriminant analysis (which assumes homoscedasticity,
i.e., σA = σ for all A), this is a simple cutting rule for which
cA can be calculated by solving the equation

� [( � )/ � ] � [( � )/ � ], ,p f c p f cA A A A A A A A A A− = −+ + + +µ σ µ σ1 1 1 1

where f is the probability distribution function of the stan-
dard normal distribution (we discuss other variants of discri-
minant analysis below). It has a simple graphical
interpretation: the cutting point between two ages is the
point at which the two distribution functions intersect
(Fig. 3b). The MLA rule is known to produce asymptotically
biased estimates of proportions at age (McLachlan and
Basford 1988), so it will not be the best rule if our aim is to
use our assigned ages to estimate these proportions. The bias
associated with this rule is our first type of bias, which we

call “discriminant bias”. It differs from the other types dis-
cussed below in that it is associated with a specific cutting
rule. A simple alternative rule, which does not produce this

© 2004 NRC Canada

1272 Can. J. Fish. Aquat. Sci. Vol. 61, 2004

Fig. 3. Illustration of the application of three cutting rules (mid-
point, most likely age (MLA), and unbiased proportions at age
(UPA)) for otolith weight to a simple population with two age
classes (ages 1 and 2 in proportions 0.3 and 0.7, respectively).
The curved lines illustrate the assumed distribution of otolith
weight for ages 1 (mean = 10, SD = 5) and 2 (mean = 20, SD =
5); the two shaded areas in each panel correspond to fish that
are assigned the wrong age by the cutting rule, and the number
within each shaded area is the associated percentage of the pop-
ulation (when these numbers are unequal, the proportions at age
estimated using the rule will be biased).

Separation index
Species Ages (years) WO LF WO and LF
Irish Sea cod 1–2 3.14 3.31 4.19

2–3 2.90 2.31 4.53
3–4 2.23 1.51 3.66

Icelandic cod 2–3 5.75 5.80 6.71
3–4 4.32 2.98 4.38
4–5 1.47 0.52 1.52

Note: The values for Irish Sea cod are from table 6 of Brander (1974);
those for Icelandic cod are from the data in Fig. 1.

Table 1. Separation indices for the predictors otolith weight
(WO) and fish length (LF) and the combination WO and LF calcu-
lated for Irish Sea and Icelandic cod.



bias (at least asymptotically), is what we call the UPA (unbi-
ased proportions at age) rule for which we calculate cA by
solving

� [( � )/ � ] �p F c pAA
n

A A A AA
A

′′= ′ ′ ′′=∑ ∑− =1 1µ σ

where F is the cumulative distribution function of the stan-
dard normal distribution (Fig. 3c). The MLA rule general-
izes straightforwardly to the case of multiple predictors, but
this is not true (to our knowledge) for the UPA rule.
The other three types of bias are not associated with any

particular cutting rule. They will occur if we use the wrong
information in constructing our cutting rule. If we ignore
variation in pA (i.e., we make our cutting rule assuming that
all pA are equal when this is not true), we will tend to under-
estimate strong age groups and overestimate weak ones. This
has the effect of smoothing the estimated age frequency, so
we call this a “smoothing bias”. It is exactly analogous to
the bias induced by ageing error. If ageing error is symmet-
ric, a small age class followed by a large age class will tend
to be overestimated because the number of the older age
class that will be underaged will be greater than the number
of the younger age class that will be overaged. If we ignore
heteroscedasticity (i.e., assume that all σA are equal when
this is not true), we generate what we will call “hetero-
scedastic bias”, which overestimates the size of the age groups
with the smaller σA. Finally, “calibration bias” occurs if the
proportions at age in the calibration sample are not represen-
tative of those in the population and this is not allowed for in
the cutting rule. In this case, the estimated values of pA will
tend to be between the true values and those in the calibra-
tion sample.
All four types of bias for the simple example with n = 2,

σ1 = σ2, and p1 = 0.3 (so p2 = 0.7) are illustrated (Table 2).
For all bias types except heteroscedastic, the extent of bias
depends strongly on the degree of separation and is small
when S is large. For example, with a separation index S = 1,
the expected value of the estimated proportion at age 1 when
the MLA rule is used is only 0.17, so the discriminant bias
is –0.13 (= 0.17 – 0.30). However, as S increases to 2 and
then 3, this bias reduces to –0.03 and then –0.01. Thus, if
there is little or no overlap between age groups, these biases
will not be serious. Note that the biases in Table 2 are ap-
proximate in that they ignore uncertainty in the µ i and σi.
They are calculated using

� [( )/ ] [ (( )/ )]p p F c p F c1 1 1 1 1 2 1 2 21= − + − −µ σ µ σ

Note also that in practice, a mixture of biases may occur. For
example, the simplest cutting rule is to use the midpoint be-
tween modes, i.e., cA = 0.5(µ A + µ A+1). This will cause both
smoothing and heteroscedastic bias if in fact pA ≠ pA+1 and
σA ≠ σA+1.
The model that we have used in this section to describe

how WO varies within a population is called a “mixture
model”. The distribution of WO is thought of as a mixture of
n normal distributions, one for each age class, with mixing
proportions pA and with each distribution characterized by
its parameters µ A and σA. This is a useful model, which we
return to below. It is easily extended to higher dimensions
(for example, Fig. 1 may be thought of as a pictorial repre-
sentation of a mixture of bivariate distributions). It can also
be generalized by using other distributions in place of the
normal.

Published methods of inferring age

The regression method of Boehlert (1985) appears to be
the first published technique for estimating age from otolith
measurements. Boehlert assembled a suite of potential pre-
dictors (including WO, LO, wO, and their squares and cubes
and the “interaction variables” WO/LO and LO/wO) and used
forward stepwise linear regression to select those that were
the best predictors of age and to construct a regression equa-
tion. This equation is constructed from the calibration sample
(where ages are known) and then applied to the production
sample (in which we know only the values of the predictor
variables) to obtain an estimate of age for each fish. Boehlert
was implicitly using discrete ages, so the age estimated from
the regression was rounded to the nearest integer. However,
the regression method could equally well be used with con-
tinuous ages.
The regression method is very appealing in its simplicity

but has two drawbacks. It will often be necessary to trans-
form predictors and (or) the predictand to obtain linear rela-
tionships, and even then, this is likely to achieve only
approximate linearity. Some authors have not felt the need
for transformations (e.g., Anderson et al. 1992; Ferreira and
Russ 1994; Labropoulou and Papaconstantinou 2000); others
have used logarithmic (Worthington et al. 1995a; Cardinale
et al. 2000) or power (Cardinale et al. 2000; Luckhurst et al.
2000) transformations or both. The second, and more seri-
ous, drawback is that this method produces asymptotically
biased estimates of proportions at age. We illustrate this
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Expected bias in p1
Type of bias Cutting rule Cause S = 1 S = 2 S = 3
Discriminant bias MLA Use of MLA rule –0.13 –0.03 –0.01
Smoothing bias UPA Variation in pA ignored (p1 = 0.3 but assume that p1 = p2) 0.12 0.06 0.03
Heteroscedastic bias UPA Variation in σA ignored (σ2 = 1.5σ1 but assume that σ1 = σ2) –0.01 –0.03 –0.02
Calibration bias UPA pA in calibration sample differs from that in population (p1 = 0.7

in calibration sample, p1 = 0.3 in population)
0.26 0.13 0.06

Note: The tabulated values are the approximate expected bias in estimates of p1 for each of three values of S.

Table 2. Illustration of four types of bias in estimating p1 (the proportion at age 1 in an artificial population in which there are just
two age classes) with proportions at age given by p1 = 0.3 and p2 = 0.7 and the standard deviation of otolith weight at age given by
σ1 and σ2 (unless otherwise stated, σ1 = σ2).



using our normal mixture model in the following simple sce-
nario.
We assume a single predictor, WO, say, which is linearly

related to age, A, so the mean of WO for fish of age A is a +
bA. It will be convenient to write the standard deviation of
WO for fish of age A as bσA. We will distinguish between
three proportions at age: pA, the true proportion at age A in
the fish population of interest; pc A, , the expected proportion
at age A in the calibration sample; and pp A, , the expected
proportion of the production sample that will be assigned
age A. Thus, we will show bias if we find that pp A, ≠ pA. We
allow pc A, to differ from pA because some people construct
their calibration samples so as to get a more even spread of
fish sizes than would arise from a simple random sample
(Worthington et al. 1995a; Araya et al. 2001; Pilling et al.
2003). But we will need to assume that however the calibra-
tion sample is constructed, all fish of a given age have the
same probability of being selected. The production sample is
assumed to be a simple random sample from the population,
so the expected proportion at age A in this sample is pA.
Given these assumptions, we can derive approximate formu-
lae for pp A, (Appendix A). (These formulae are large-sample
approximations, which become closer and closer to being
exact as the size of the calibration sample tends to infinity).
Evaluation of these formulae for some specific scenarios

shows that the regression method, as used by Boehlert
(1985), produces three of the types of bias described above
plus another one. In these scenarios, we will assume homo-
scedasticity unless otherwise stated. This means that the sep-
aration index for WO is independent of age and given by S =
1/σ. We will also assume that all fish in the population are
known to be of age between 1 and 5, inclusive (which means,
for example, that if the regression estimate of age is 5.9, this
would be rounded down to 5 rather than up to 6). Four sce-
narios were considered, each chosen to illustrate a different
type of bias (Table 3). When all age classes are the same
size, we see that estimated proportions at age are biased
down for the younger and older ages and up for the middle
ages and that the extent of bias increases as the separation
index decreases (Fig. 4a). Bias is small when age groups are
well separated (S = 3) but substantial when separation is
poor (S = 1). This sort of bias, which we will call “centric
bias” (because bias is towards the centre of the age distribu-
tion), is well known in regression situations. When Y is re-
gressed on X, estimates of Y for large (small) values of X are
negatively (positively) biased, and the extent of bias in-
creases as the correlation between X and Y decreases. It is
more difficult to illustrate our three other types of bias be-
cause we cannot avoid centric bias when using this regres-
sion method. In each of scenarios 2 to 4, variant 1 (which is
identical to variant 2 of scenario 1) involves only centric
bias, and variants 2 and 3 involve this bias plus increasing
amounts of the bias that is illustrated by the scenario. The
results suggest that, for Boehlert’s regression method,
smoothing bias (Fig. 4b) is likely to be quite significant, cal-
ibration bias (Fig. 4c) may be minor, and heteroscedastic
bias (Fig. 4d) may be of intermediate severity.
In situations where there is only a single predictor (WO,

say), some authors have queried whether it is appropriate to
use the usual predictive regression of A on WO. Two alterna-
tives have been proposed. Worthington et al. (1995a) sug-

gested that it would be better to use the opposite regression.
The usual theoretical justification for using this approach
(which is called linear calibration) does not seem to apply
here. Stuart and Ord (1991) pointed out that regressing X on
Y provides maximum-likelihood estimation of the regression
coefficients conditioned on the values of X. This suggests
that linear calibration might be the theoretically correct re-
gression if the calibration sample were constructed by, say,
choosing at random 20 fish from each of a selected set of
age classes. But this is not a common method of creating a
calibration sample (because the age of fish is not generally
known when this sample is selected). Whatever the theoreti-
cal justification, this approach does appear to produce much
less bias. Smoothing bias is reduced (Fig. 4f), centric and
heteroscedastic biases are almost nonexistent (Figs. 4e and
4h), and there is no calibration bias (Fig. 4g). The second al-
ternative to the usual regression of A on WO is to use the
geometric mean (GM) regression (Ricker 1973). Pilling et
al. (2003) suggested that this was preferable to the normal
regression model because both age and its predictor are
likely to be measured with error. With GM regression, we
do not need to ask whether we should regress WO on A, or
vice versa, because we get exactly the same results with
both regressions. The bias from this method is (at least in
our examples) intermediate between that for standard regres-
sion and linear calibration (Figs. 4i–4l). The two alternative
regressions (linear calibration and GM) seem limited in that
they allow only one predictor variable. This could perhaps
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Scenario
Type of bias
illustrated Variant assumptions

1 Centric 1: S = 1
2: S = 2
3: S = 3

2 Smoothing 1: pA = pc,A = (0.20, 0.20, 0.20,
0.20, 0.20)

2: pA = pc,A = (0.25, 0.13, 0.25,
0.13, 0.25)

3: pA = pc,A = (0.27, 0.09, 0.27,
0.09, 0.27)

3 Calibration 1: pc,A = (0.20, 0.20, 0.20, 0.20,
0.20)

2: pc,A = (0.25, 0.13, 0.25, 0.13,
0.25)

3: pc,A = (0.27, 0.09, 0.27, 0.09,
0.27)

4 Heteroscedastic 1: σA = (0.50, 0.50, 0.50, 0.50,
0.50)

2: σA = (0.50, 0.54, 0.57, 0.61,
0.65)

3: σA = (0.50, 0.57, 0.65, 0.73,
0.80)

Note: Each scenario illustrates one type of bias and has three variants.
Note that variant 2 in scenario 1 is identical to variant 1 in scenarios 2 to
4. Unless otherwise specified, pA = (0.20, 0.20, 0.20, 0.20, 0.20), pc,A =
(0.20, 0.20, 0.20, 0.20, 0.20), σA is independent of age, and S = 2 for all
ages.

Table 3. Four scenarios used in illustrating bias in the regression
method in Fig. 4.



be overcome by a two-stage procedure: first, use Boehlert’s
(1985) approach to find the best linear combination of pre-
dictors and then use this combination as a single predictor in
linear calibration or GM regression. However, it would be

better to find a method of inferring age that was not subject
to smoothing bias.
Pawson (1990) proposed a new method of estimating age

from WO and LF. This requires the assumption that when WO
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Fig. 4. Illustration of bias in estimation of proportions at age using three regression methods ((a–d) normal regression, (e–h) linear cal-
ibration, and (i–l) GM regression) and scenarios illustrating four types of bias (centric (top row), smoothing (second row), calibration
(third row), and heteroscedastic (bottom row)). In each panel, the plotting symbols 1, 2, and 3 show the bias for the three variants
within each scenario.



is regressed on LF for each age group, the regression slope,
b, is the same for all age groups. The first step is to calculate
“equivalent” otolith weights, WOe, for each fish using some
common reference length, LFref, via the formula WOe =
b(LFref – LF) + WO. This calculation can be thought of as a
projection in the WO–LF plane along lines of slope b (Fig. 5).
For the sardine data analysed by Pawson, the age groups
show very little overlap when the calibration sample is plot-
ted as WOe against LF (fig. 5 in Pawson (1990)). Thus, for
this species, ages could be assigned unequivocally to most
fish in a production sample by making a WOe–LF plot. There
would be only a few fish for which there was some doubt
(those that lay in an area of overlap between age groups in
the calibration sample WOe–LF plot). (Note that it does not
matter what value of LFref is used (as long as the same value
is used for all fish); changing to a different value is equiva-
lent to applying a linear transformation to WOe, which does
not change the degree of overlap in the WOe–LF plot.) There
are two problems with this method. First, it will have limited
use because it requires the strong assumption that the slope
b is the same for all age groups; although there may be cases
where this assumption holds, two data sets that we have ex-
amined (including that in Fig. 1) show this slope increasing
with age. Second, it is not specified exactly what cutting
rule should be used to deal with any overlap between age
groups (which was slight for Pawson’s sardines but may be
substantial for other species). Pawson referred to the con-
struction of WOe–LF keys, but the details of this method are
unclear. As we have shown in the previous section, the
choice of cutting rule is important. Until we know what cut-
ting rule is proposed, we cannot evaluate Pawson’s method
any further.
A third method of age inference, modal analysis, was used

by Fletcher (1995). This differs from all other proposed
methods in that it uses no age data and thus does not require
a calibration sample. The problem addressed is the same as
has been considered by many authors who have estimated
proportions at age from multiple LF samples. The only dif-
ference is that Fletcher used WO in place of LF. Otolith
weights were measured from random samples taken at 3-
month intervals from catches in a west Australian pilchard
fishery. The histogram of WO for each sample showed a se-
ries of modes, and these modes were seen to move to the
right from sample to sample in a way that suggested that
each mode was associated with an age class. The modal de-
composition software MIX (MacDonald and Green 1988)
was used to find the location (i.e., the mean) of each mode,
the position of modes was averaged between years, and an
age class was assigned to individual fish according to which
WO mode it was closest to. Estimated ages were then aggre-
gated to calculate proportions at age in the catch. Although
the idea of inferring ages from multiple WO samples is
promising, an alternative to the analytical method used by
Fletcher would provide more accurate results. We have seen
above that choosing the midpoint between modes invites
smoothing and heteroscedastic bias. Averaging modal posi-
tions between years will cause calibration bias if there is any
between-year variation in otolith growth. In addition, there is
no need to assign ages to individual fish because MIX di-
rectly estimates proportions at age (and these, rather than
individual ages, were a stated objective of this study). A

weakness of MIX is that it analyses each histogram sepa-
rately and thus cannot use information from the adjacent
samples to help locate modes and estimate their spread.
Adapting a tool like MULTIFAN (Fournier et al. 1990),
which analyses multiple LF histograms, could overcome this
weakness.
The final method is discriminant analysis, or the MLA

rule (see above), which Fletcher and Blight (1996) applied
to WO–LF data for pilchards. This technique has the merit of
being easily applied to multiple predictors and not requiring
linearity between predictors and predictand. However, it is
important to specify which of several variants of
discriminant analysis is used and what “prior” assumptions
are made about the pA. The simplest, and most common,
variant, usually called linear discriminant analysis, assumes
normality and homoscedasticity. Quadratic discriminant
analysis drops the latter assumption, and nonparametric
discriminant analysis drops the former. Two common “prior”
assumptions are the uniform prior (pA = 1/n) and priors
equal to the proportions in the calibration sample. In the
present context, the best results will be obtained if the cali-
bration sample is a simple random sample from the popula-
tion and the latter choice of prior is used. Otherwise,
calibration bias will occur. Given appropriate assumptions,
discriminant analysis should avoid centric, smoothing, and
heteroscedastic bias. However, if the objective is to estimate
proportions at age (rather than assign ages), it will be subject
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Fig. 5. Illustration of the calculation of equivalent otolith weight
(WOe) in the method of Pawson (1990). The parallel thick solid
lines are from the regression of otolith weight (WO) on fish
length (LF) for each age from 1 to 5; the arrows illustrate how
points representing individual fish (×) are projected onto the bro-
ken line (LF = LFref) with the height of the resultant point being
the value of WOe for the fish.



to discriminant bias (see above). When there is only one pre-
dictor, this may be overcome by the use of the UPA rule. An
alternative approach is to apply a bias correction to the MLA
rule estimate of pA. We call this the confusion matrix (CM)
estimator of pA because it uses the so-called CM, whose ijth
term is the estimated probability that a fish in the ith age
class will be assigned to the jth age class by the MLA rule
(see section 4.3 of McLachlan and Basford (1988) for more
about this estimator).
Two general points can be made about all of the methods

reviewed in this section. First, all methods assigned ages to
individual fish. This is intrinsic to the regression and
discriminant analysis methods but was not necessary with
modal analysis. Given that the aim in many studies is to esti-
mate proportions at age, it would seem sensible to consider
methods that do this directly rather than via assigned ages.
Second, in those methods that use a calibration sample, in-
ference is a two-stage procedure: devise a rule from the cali-
bration sample and then apply it to the production sample.
This means that these methods cannot use any information
from the production sample in formulating their rule. In the
next section, we propose a new method that directly esti-
mates proportions at age and that does this in one step, com-
bining information from both samples.

A new method of inferring age: mixture
analysis

We return to our mixture model but describe it first in a
more general form. We assume that a vector X is associated
with every fish in a population. Vector X may contain any
otolith or body measurements, such as WO, LO, or LF, or any
transformations (e.g., log(WO)) or functions (e.g., WO/LO) of
these measurements. For fish of a given age, A, the distribu-
tion of X is described by the density function g(X; �A) for
some unknown vector of parameters, �A. The proportion of
fish of age A is pA. As above, we have two random samples
from the population: the calibration sample, containing mea-
surements and age for each of nc fish, (Xi, Ai, i = 1,..., nc),
and the production sample, containing just measurements for
each of np fish, (Xj, j = 1,..., np). To start, we will assume
that both samples are simple random samples, but we will
later discuss ways in which this assumption could be modi-
fied.
Given these assumptions, we can estimate the pA (and the

�A) by maximum likelihood (Stuart and Ord 1991). The log-
likelihood of the parameters (pA,�A) given the observations
is

λ λ λ= +c p

= +Σ Σ Σi A i A j A A j Ap g p g
i i

log[ ( ; )] log[ ( ; )]X Xθ �

so estimation is simply a matter of searching for the values
of (pA,�A) that maximize λ (the terms λc and λp are the log-
likelihood components associated with the calibration and
production samples, respectively). If we also wish to assign
ages to individual fish in the production sample, we can do
this by assigning the most probable age, just as is done in
discriminant analysis. That is, we assign the jth fish to the
age A for which pAg(Xj;�A) is largest. However, we should
not then estimate proportions at age using these assigned

ages because, as with the MLA rule, these estimates will be
biased.
In the example that we have used above, X has just one

member, WO, �A is the pair (µ A,σA), and g(X;�A) is the nor-
mal density function:
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In its most general form, mixture analysis can present
some technical problems (McLachlan and Basford 1988).
The likelihood function may be unbounded or have multiple
maxima (so that maximum-likelihood estimation is not pos-
sible), and there can be difficulty in deciding how many
groups there are in the mixture. These problems are avoided
in the present application as long as the calibration sample is
large enough to contain all of the age groups present in the
production sample. When there are few enough age classes
that the calibration sample can be expected to include multi-
ple observations for each age class, the number of groups in
the mixture will sensibly be set to the number of age classes
in this sample. When there is a large number of ages (e.g.,
Boehlert 1985), not all may be observed in the calibration
sample, so a mixture with components spanning the range of
ages in this sample might be reasonable, and applying some
constraints on the parameters (see below) should avoid esti-
mation difficulties.
When there is no calibration sample and only one nor-

mally distributed measurement, the mixture analysis method
described here is precisely that used in the program MIX
(MacDonald and Green 1988). That method was substan-
tially and elegantly extended by MULTIFAN (Fournier et al.
1990), which made the likelihood more robust and enhanced
estimation by allowing the simultaneous analysis of several
simple random samples collected at different times (so that
the way that length modes shifted over time could be used in
the estimation). We make no further comment for the situa-
tion where there is no calibration sample except to remind
readers that we might do better if our predictor X were
multivariate. In particular, as observed by Brander (1974)
(see quote above), the pair (LF ,WO) may be a better predic-
tor of age than either WO or LF alone.
There are a number of reasons to recommend the mixture

analysis approach. First, if the aim is to estimate proportions
at age, this method will avoid all the asymptotic biases men-
tioned above because maximum-likelihood methods are
known to be asymptotically unbiased (Stuart and Ord 1991).
Second, whether we are estimating pA or assigning ages, this
method seems likely to make better use of the information in
the production sample. For example, when X is multivariate
normal, both this method and discriminant analysis obtain
estimates of the �A, but the mixture estimate ought to be
superior because it uses information from both samples,
whereas the discriminant analysis estimate uses only the cal-
ibration sample. A better estimate of the �A should lead to a
better estimate of the pA.
The mixture analysis method is also flexible. If the pa-

rameter vector �A has length m, then we can estimate a full
set of n(m + 1) parameters or, if the data seem to warrant it,
we can reduce the number of parameters by using appropri-
ate constraints. For example, for the one-dimensional normal
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example that we used in Fig. 4, we have the constraint µ A =
a + bA, which reduces the number of parameters to be esti-
mated from 3n to 2n + 2, and the additional constraint σA =
σ reduces it further to n + 3. Such constraints are particu-
larly recommended when X is multivariate. If, for example,
X = (WO, LO, LF) and this is multivariate normal, there
would, in the absence of any constraints, be 7n parameters
to estimate (3 SDs, three correlations, and pA for each age
class). Linear constraints on the standard deviations and (or)
correlations would often be sensible. This is particularly true
when the number of calibration observations per age class is
small. Likelihood ratio tests can be used to determine
whether these constraints are justified. There is no need to
assume linearity, as was required in the regression methods.
If, for instance, the relationship between mean WO and age
is quadratic, we simply change our constraint to µ A = a +
bA + cA2. We may choose to transform some of our mea-
surements (e.g., use log(WO) rather than WO), but this need
not be done to obtain linearity. Other reasons for such trans-
formations are to normalize a distribution or to obtain homo-
scedasticity (so we can assume that σA = σ).

Extensions to the mixture analysis method

The log-likelihood function given above assumes that the
calibration sample is a simple random sample of the popula-
tion. This is not always possible or convenient. There are
two alternative sample structures for which it is easy to
modify the λc term in the log-likelihood function. If the cali-
bration sample is random at age (i.e., all fish of the same age
have the same probability of being included in the sample),
then the form λc = Σi log[ ( ; )]g i AiX � should be used. This
form could also be used when the calibration sample is a
simple random sample but is selected from a different popu-
lation (different, that is, from the population from which the
production sample is selected and about which we wish to
make age inferences). However, we must be able to assume
that the distribution of X at each age is the same in both
populations. Suppose, for instance, that we know that the
distributions of WO at each age do not vary significantly
from year to year. Then, if we are using only WO as a predic-
tor, we could use a calibration sample from an earlier year.
This sample would then be representative of the current pop-
ulation (from which we draw the production sample) in terms
of WO but not in terms of pA, so the random-at-age form of
λc could be used. Some authors prefer to use a length-
stratified calibration sample (e.g., Araya et al. (2001) se-
lected 10 fish from each 1-cm length class). This can be
accommodated as long as the sample is random at length
(i.e., all fish of the same length have the same probability of
being included in the sample) and fish length is included in
the vector of measurements X. If we take the example X =
(LF,WO), then λc should be given by

λc F O F= Σ Σi Ai A A Ap g L W p h Llog[ ( , ; )/ ( ; )]i i Ai i� �

where h(LF; �A) is the density function of LF for fish of age
A, which is a marginal density of g(LF,WO; �A).
We can also modify λc to deal with ageing error in the

calibration sample as long as we can provide a misclassi-
fication matrix M to characterize this error. The element
MA A, ′ of this matrix denotes the probability that a fish of

true age A is given age A′ (so the rows of this matrix must
sum to 1). This matrix can be constructed using replicate age
estimates. With ageing error, we have

λc = Σ Σi A A A A i Ap g
i

log[ ( ; )],M X �

Estimation for the mixture-analysis model has been de-
scribed in terms of maximum likelihood. However, it would
be relatively straightforward to convert to Bayesian estima-
tion (Berger 1980). This requires the user to supply prior
distributions for every model parameter. Also, estimation is
more complex because what is required is a joint posterior
distribution for all parameters rather than just a single value.
However, there are several widely available software pack-
ages such as BUGS (http://www.mrc-bsu.cam.ac.uk/bugs/)
and AD Model Builder (http://otter-rsch.com/admodel.htm)
that facilitate Bayesian estimation. The specification of prior
distributions is often difficult. However, it might be simpler
if the model were to be used year after year with the same
fish stock. In this situation, it would be sensible to use the
posterior distributions for the �A from one year as the prior
distributions in the following year (but of course, it would
not be sensible to do this for pA).
It is common to estimate proportions at age in a fishery

catch using an age–length key (Kimura 1977). A small sam-
ple of age and length data is used to convert estimated pro-
portions at length in a catch, say, to proportions at age. An
obvious question to ask is whether otolith measurements
could be used in place of annulus counts in this setting. In
particular, can the mixture analysis model be extended for
use here? The answer is yes, and this extension will be de-
scribed in a separate paper.
Mixture analysis can also be adapted to the situation where

the prime reason for inferring age is to estimate growth pa-
rameters rather than proportions at age. All that is required
is to include LF in the vector of measurements X and impose
the constraint that mean lengths at age follow a growth curve.
The parameters of that growth curve are then estimated di-
rectly in the mixture analysis method.

Evaluating performance

In this section, we discuss approaches for evaluating the
performance of methods of inferring age from otolith mea-
surements. We will consider both types of inference (assign-
ing ages and estimating proportions at age) and begin by
reviewing the literature.
The most common statistic that has been used to measure

how well ages have been assigned to individual fish is the
probability of correct age estimation, Pcorrect, which is some-
times expressed as the percentage correctly classified
(Pawson 1990; Worthington et al. 1995a; Pilling et al. 2003).
When a calibration sample is used, this compares “true” ages
(usually from annulus counts) with assigned ages; in a modal
analysis, it could be calculated using the estimated means
and standard deviations for each mode and normal distribu-
tion theory. An alternative statistic, useful when ageing error
is proportional to true age, is the coefficient of variation of
the ageing error (Worthington et al. 1995a; Cardinale et al.
2000; Pilling et al. 2003). In almost all of the studies that we
reviewed, the statistics presented gave an optimistic view of
estimation performance because they were calculated using
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the same sample that was used to calibrate the cutting rule.
For an unbiased estimate of either of these statistics, the
simplest approach is to use two calibration samples. The cut-
ting rule is calculated using the first sample, which is then
applied to the second sample, and the statistic is calculated
from the difference between “true” and assigned ages in the
second sample. A better, but more complicated, alternative
is to use cross-validation with a single calibration sample
(Finn et al. 1997).
There are two other statistics that provide a rough guide to

how well ages are estimated. The first is the separation in-
dex, S, whose approximate relationship to Pcorrect has been
discussed above. The separation index is useful in that it
provides an objective measure of the amount of overlap be-
tween adjacent modes. For example, a visual assessment of
histograms by Fletcher (1991) suggested “little overlap of
otolith weight between age classes”, but separation indices
calculated from the means and standard deviations in his ta-
ble 2 range from 1.7 to 5.7, with median 2.7. The second
statistic, relevant only for the regression method, is the re-
sidual standard deviation, sres. The bigger sres is, the poorer
the estimation. To show how this statistic relates to Pcorrect,
we take an example from Boehlert (1985). In his table 3, he
presents a regression for estimating whole-otolith age from
WO and wO for females and calculates sres = 4.15 years. This
means that if we take a group of female fish, all of which
have exactly the same values of WO and wO, the expected
standard deviation of their ages will be 4.15 years. If the re-
gression estimate of the age of these fish is unbiased, they
will all be estimated to be of age equal to their mean age,
Amn. Only those fish whose true age differs from Amn by less
than 0.5 year will be assigned the correct age so Pcorrect ≈
F(0.5/4.15) – F(–0.5/4.15) = 0.096 (that is, only 9.6% of fish
are aged correctly, assuming normality and ignoring bias). If
there is only a single regression predictor, we can get some
idea of estimation performance from a data plot. For exam-
ple, from fig. 4 of Luckhurst et al. (2000), we can see that a
fish with WO = 550 mg could be any age between about 10
and 17 years, so we cannot expect a high Pcorrect for this spe-
cies.
Many authors appear to believe that, in a regression con-

text, high R2 values imply good estimation performance, but
it is easy to show that this is not so. If we consider the sim-
plest case of the mixture model used in Fig. 4 (i.e., assuming
homoscedasticity and no variation in proportions at age), the
equation for R2 given in Appendix A simplifies to R2 =
1/(1 + 12/(S2(n2 – 1))), where S = 1/σ is the separation index
between adjacent age classes and n is the number of age
classes. So, if S = 3, R2 can be as low as 0.69 for n = 2 but
increase to 0.997 for n = 20. But for this simple model, the
probability of correct age estimation Pcorrect = 0.87, regard-
less of the number of age classes n (see above). Thus, R2 is
clearly not closely related to how well we estimate age for
this model. Another indication of how little R2 means is
given by the regression results of Boehlert (1985). Amongst
the 12 regression models he presents in his tables 3–5 and
10–12, there are three for which sres = 2.8 (which implies
Pcorrect ≈ 0.14), but the R2 values for these regressions vary
between 0.70 and 0.92. Where R2 can be useful is in com-
paring predictors for the same predictand (which will be age
or some transform of age).

Worthington et al. (1995a) recognized that R2 was not an
appropriate measure of estimation performance but suggested
that “the ratio of the mean squares due to the regression and
the residual...is a more appropriate index of the potential of
otolith weight to estimate age”. As they pointed out, this ra-
tio is just the F statistic used to test the null hypothesis that
the regression slope is zero (Draper and Smith 1981). This is
not a good measure of estimation performance because its
value can be made as large as we like (i.e., the associated
P value can be made as small as we like) simply by taking a
large enough sample from the population. All it tells us is
how confident we can be that the correlation between otolith
weight (say) and age is nonzero.
A common way of evaluating estimation performance has

been with what we might call comparative methods where
the comparison made is with the conventional ageing method
(annulus counts). The logic behind these methods seems to
be that if the otolith measurement method can be shown to
be comparable with or better than the annulus count method,
then it is preferable because it is cheaper. We first describe
four different comparative methods and then return to the
logic behind them. The first two methods compare differ-
ences between repeated annulus counts (either within-reader,
between-reader, or between-agency differences) with those
between annulus counts and ages inferred from otolith mea-
surements. Thus, they compare within-annulus-method error
with the between-methods error. The first method, used by
Boehlert (1985), compares mean differences, which are a
measure of bias (although in describing this comparison,
Boehlert referred to variability rather than bias). Other stud-
ies have compared variability, measured either by Pcorrect
(Pawson 1990; Fletcher and Blight 1996) or an error coeffi-
cient of variation (Worthington et al. 1995a). The other two
methods compare estimates, rather than errors, and do so
with statistical tests. Boehlert did this for estimates of indi-
vidual ages using a paired t test; other authors have used a
Kolmogorov–Smirnov test to compare estimated proportions
at age (Worthington et al. 1995a; Cardinale et al. 2000;
Pilling et al. 2003).
It seems to us that all of these methods have missed the

point. To start with, the focus has mostly been on the assign-
ment of ages to individual fish. As we have said above, the
reason for age estimation is almost always to estimate popu-
lation parameters, usually proportions at age. If people are
going to go to the trouble and expense of devising an alter-
native method of inferring age, they are likely to be doing so
for use in routine (probably annual) estimation of population
parameters. Thus, when they are evaluating these alternative
methods, their focus ought to be on determining which
method will produce the best parameter estimates. Once we
focus on parameter estimates, cost and sample sizes become
important. Many authors have noted that otolith measure-
ment is much cheaper than annulus counting. For example,
Boehlert (1985) gave processing rates of 6–8/h for annulus
counts using sectioned otoliths and 40/h for otolith measure-
ments. Thus, for a given cost, we have a choice between us-
ing annulus counts from a medium-sized sample or otolith
measurements from a large production sample together with
both annulus counts and otolith measurements from a small
calibration sample. The key question is, which will give
better parameter estimates? In other words, to decide be-
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tween otolith measurement and annulus count methods, we
need a cost–benefit analysis.
The study of Worthington et al. (1995b) appears to be the

only one that has attempted to evaluate an otolith measure-
ment method of inferring age using a cost–benefit analysis.
They simulated data based on two populations of Poma-
centrus moluccensis and showed, among other things, that
an annulus count sample of 200 fish would provide less
accurate estimates of proportions at age than an otolith-
weight sample of 500 (assuming a coefficient of variation of
ageing error of 5% for annulus counts and 10% for an
otolith weight method). Because the processing time for
annulus counts is 5–10 times that for otolith weights, they
concluded that the otolith weight method is a more cost-
effective, and thus preferable, tool for estimating proportions
at age for this species. Despite the overall advantages of this
approach, there are some additional considerations that would
have been useful. First, it is not clear whether all costs have
been considered. The costs are defined as relative processing
times and do not appear to include sample collection costs
(it presumably costs more to collect 500 otoliths than to col-
lect only 200). Also, the otolith weight method requires a
calibration sample, whose cost does not appear to have been
allowed for, and the error coefficient of variation of this
method must depend on the sizes of both the calibration and
production samples. Second, the modelling of errors for the
otolith weight method was perhaps too simple. Estimation
errors are a mixture of bias and imprecision, and different
estimation methods will produce a different mixture. The au-
thors’ approach assumes that the two methods have the same
mixture. This might be important because the mixture of
bias and imprecision associated with an estimator determines
how quickly performance improves as sample sizes increase.
These details aside, we believe that a cost–benefit analysis
similar to that adopted by Worthington et al. (1995b) is the
only valid way to decide whether otolith measurement meth-
ods are worth using instead of the traditional annulus counts.

A simple simulation experiment

We present a simple experiment, with simulated data, that
illustrates both the application of the mixture analysis model
and the cost–benefit analyses recommended in the preceding
section. The simulated data came from a mixture model with
one predictor, WO, and just two ages (i.e., n = 2). We as-
sumed that WO had mean values µ1 = 10 and µ2 = 20 and
standard deviations σ1 = 5 and σ2 = 8 and that the propor-
tions at age were p1 = 0.3 and p2 = 0.7. Five hundred data
sets were simulated from this population; in each, there was
a calibration sample of size 50 and a production sample of
size 250 (both simple random samples). For each data set,
we obtained seven estimates of p1. The first five used meth-
ods reviewed above (ordinary regression, linear calibration,
GM regression, MLA (quadratic discriminant analysis), and
the UPA rule). Each of these methods assigns an age to each
fish in the production sample, and our estimate of p1 was the
proportion of 1-year-olds in the combined calibration and
production samples. (Note that it is sensible to combine the
calibration and production samples to estimate p1 because
the former sample is simple random; had it been only ran-
dom at age or random at length, we would estimate p1 from

the proportion of assigned 1-year-olds in the production sam-
ple alone.) Our sixth estimate used the CM method, which
assigns ages using the MLA rule but then adjusts the esti-
mate of p1 for bias. The final estimate came from the mix-
ture analysis model (this is a direct estimate in that it does
not involve assigning ages to individual fish).
For each method, we calculated three performance mea-

sures. The most important of these, the root mean square error
(RMSE), is defined as [( / ) ( � ) ],1 500 1

2 0.5Σk kp p1 − , where the
summation is over the 500 estimates of p p p p1 1,1 1,2 1,500( � , � , , � )� .
This measures how close the estimated p1 is to the true
value, on average, so the smaller RMSE, the better. The
other two measures are bias 1 500 1= −( / ) ( � ),Σk kp p1 and
precision 1 500 1

2 0.5= −[( / ) ( � ) ],Σk kp p1 . The three measures are
related by the equation RMSE2 = bias2 + precision2. The last
two measures are useful to help us distinguish between esti-
mators that are poor (i.e., have high RMSE) because they are
biased but precise from those that are unbiased but impre-
cise. Approximate 95% confidence intervals were calculated
for all three measures (see Appendix B).
A useful benchmark for comparison is the estimate of p1

we would get if we simply ignored the WO data and calcu-
lated the proportion of 1-year-olds in the calibration sample.
From binomial theory, we know this estimator has bias = 0
and RMSE = precision = [p1(1 – p1)/50]0.5 = 0.0648.
The results from this experiment (Fig. 6) show that, for

this simple example, only mixture analysis and UPA give
better results than we would get if we ignored the WO data,
and all methods but these two show significant bias (i.e., the
95% confidence intervals for the estimated bias do not in-
clude zero). Linear calibration is the most precise of all
methods considered but also shows the greatest bias. The
RMSE confidence intervals for UPA and mixture analysis
overlap, so we cannot, on the basis of this statistic, say
which is better. However, because both methods were ap-
plied to the same data sets, we can make a paired compari-
son, which is more powerful. We counted how many times
out of 500 the mixture analysis estimate was closer to the
true value. Under the null hypothesis of no difference be-
tween the two methods, this count should have a binomial
distribution with parameters 500 and 0.5. The observed
count was 291, so we can reject the null hypothesis and de-
clare the mixture analysis method superior for this simple
example (two-sided test, P = 0.0002).
Our judgement of these methods would be quite different if

our main aim had been to assign ages to individual fish (rather
than estimate proportions at age) and we chose Pcorrect as our
performance measure. By this measure, UPA is the best
method (for our simple example), although there is not a
great deal to choose from between the different methods
(Fig. 7).
Now to a cost–benefit analysis. Suppose the per-otolith

costs of collecting, weighing, and ageing fish are Ccollect,
Cweigh, and Cage, respectively (these costs could reflect not
only the time taken for each of these operations but also the
different levels of skill required, which affects salaries). For
the sample sizes used in our experiment, the total cost is
given by C1 = 50(Ccollect + Cweigh + Cage) + 250(Ccollect +
Cweigh). The RMSE obtained using the mixture analysis
method was 0.056. To have achieved the same RMSE with-
out WO data would have required a sample of 67 (= 0.3 ×
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0.7/0.0562) otoliths, which would cost C2 = 67(Ccollect +
Cage). It would be worthwhile using the mixture analysis
method only if C1 < C2. For the UPA method, the analogous
calculations lead to an equivalent sample size of 58 (= 0.3 ×
0.7/0.0602) otoliths, so this method would be worthwhile
only if C1 < 58(Ccollect + Cage).

We stress that we intend this example to be illustrative
rather than definitive. It would be quite wrong to draw gen-
eral conclusions about the relative merits of the different age
inference methods on the basis of such a limited experiment.
Nevertheless, our results do give some support to the view,
expressed above, that the mixture analysis method should be
superior to the other methods because it is (at least asymp-
totically) unbiased and makes better use of the production
sample than do all of the other methods. The equivalent
sample sizes calculated for our cost–benefit analysis might
seem surprisingly small. They imply, for example, that our
production sample of 250 otolith weights contains only as
much information as 17 (= 67 – 50) additional annulus
counts (assuming that we use the mixture analysis method).
The reason for this is that the separation index in our exam-
ple is low (2.1), which implies that the WO data cannot con-
tain much information about age. When we repeated the
above experiment with a higher separation index (shifting µ2
to 25 so S = 3.2), we obtained a lower RMSE (0.046), which
meant that the production sample contained as much infor-
mation as 49 additional annulus counts. So, the higher the
separation index, the more likely it will be that it is worth-
while to use WO data in inferring age.

Discussion

Given the large number of otoliths that are read every
year, usually with a high per-otolith cost, there is potential
for great cost savings if otolith measurements can be used to
infer age. How much money can be saved, if any, will vary
from fish stock to fish stock depending on the specific form
of otolith (and body) growth. For each stock, there are four
questions that we must address before we can decide
whether there are savings to be made. We will discuss each
question separately, referring both to the literature that we
have reviewed and to the method suggested above.

© 2004 NRC Canada

Francis and Campana 1281

Fig. 6. Estimated performance measures (RMSE, bias, and preci-
sion) for seven methods of inferring proportions at age using
annulus count and otolith weight (WO) data from a simple two-age
population. Horizontal lines are approximate 95% confidence
intervals for each performance measure; vertical broken lines are
the performance measures that would be obtained if the WO data
were ignored. CM, confusion matrix; GM, geometric mean; MLA,
most likely age; UPA, unbiased proportions at age; RMSE, root
mean square error.

Fig. 7. Estimates of Pcorrect (proportion of fish assigned the cor-
rect age , ×) with 95% confidence intervals (i.e., ±2 SE shown
by horizontal lines) from the same simulation experiment as for
Fig. 5. CM, confusion matrix; GM, geometric mean; MLA, most
likely age; UPA, unbiased proportions at age.



The first question is “what do we want age data for?” We
believe that the most common answers to this question are “to
estimate proportions at age” and “to estimate growth parame-
ters”, but many published studies seem to have assumed the
answer “to assign ages to individual fish”. The question is im-
portant because it affects the way we compare our otolith
measurement method with the annulus count method. For ex-
ample, we have shown in our example that the use of Pcorrect
as a performance measure will produce misleading results if
our aim is to estimate proportions at age.
The answer to our second question, “which are the best

measurements to use as predictors?”, will clearly vary from
stock to stock. The literature shows that otolith weight (WO)
is a prime candidate, but there will often be gains to be
made from using multiple predictors. The figures in Table 1
show that we should not ignore fish length (LF) as a poten-
tial predictor (to be used in conjunction with other predic-
tors, such as WO). Some methods of inference (e.g., linear
calibration and GM regression) are limited by allowing only
one predictor.
We have provided some information towards an answer to

our third question, “which is the best method of inference?”
When the aim is to estimate proportions at age, we have
shown that all published methods are subject to asymptotic
biases of various sorts and that there are some grounds for
preferring the mixture analysis method. Nevertheless, only a
thorough investigation will establish which is the best
method in a particular situation. Several methods have been
proposed for inferring age from otolith measurements, but
there have been no studies comparing alternative methods
for a specific fish stock.
Our fourth question, “how should we evaluate these meth-

ods of inference?”, is the only one that seems to us to have
just one answer. Only a cost–benefit analysis will show
whether a proposed method is superior to counting annuli.
To be acceptable, the proposed method must provide “better”
estimates of the desired quantities (be they proportions at
age, growth parameters, or simply ages) for the same cost as
the annulus count method (or equally good estimates for a
lower cost). Exactly how we define “better” will depend on
what we are estimating. For our simple example, RMSE in
the estimate of p1 seemed to be an appropriate measure. This
could be extended for the case when there are more than two
age classes by making the summation in the formula for
RMSE to be over age classes as well as data sets. When our
focus is on assigning ages to individuals, we might use mea-
sures such as Pcorrect or average percentage error. A simula-
tion experiment, like that described above (but much more
comprehensive), is an ideal way to carry out the cost–benefit
analysis. While artificial data provide a useful way to inves-
tigate general properties of estimators, we can make useful
conclusions about a specific fish stock only by basing our
simulations on data from that stock. For instance, we might
simulate more realistic data sets by bootstrapping (i.e., se-
lecting at random, with replacement) the data in Fig. 1. With
such data, we can easily simulate the effect of changes in
proportions at age by altering the probability of selecting
fish of different ages. Ideally, these simulated data should in-
clude error in annulus counts (as inferred from replicate an-
nulus counts), where this is significant. When the reason for
inferring age is to provide inputs to a stock assessment, it

may be possible to extend the simulation experiment to in-
clude running the stock assessment model with inferred ages
from the simulated data. In this case, our performance mea-
sures for evaluating the alternative methods of inference
would measure how well we estimated key assessment out-
puts (e.g., current exploitation rates).
Many authors have followed Boehlert (1985) in describing

age inference methods based on otolith measurements as be-
ing “objective”. This seems to be inaccurate. Most otolith
measurements are rightly labelled objective, particularly in
contrast with the subjectivity of annulus counts. However,
all methods that use a calibration sample depend on both ob-
jective measurements and subjective counts and so cannot be
considered as objective. As Worthington et al. (1995b) noted,
these methods cannot be expected to produce better esti-
mates of age than the annulus counts that are used to cali-
brate them; even the age readings of skilled age readers are
not completely reproducible, underlining the presence of
random ageing error (Campana 2001). It may be reasonable
to use the word “objective” when no calibration sample is
used, but even here, there is often an element of subjectivity
(e.g., in deciding how many modes, or age classes, to fit).
Several authors have mentioned the need for regular re-

calibration (Boehlert 1985; Worthington et al. 1995b; Pilling
et al. 2003). That is, we should be cautious about using the
same calibration sample over and over again. There are two
ways in which a calibration sample might be inappropriate
for use with a particular population. First, its proportions at
age may not be representative of that population. For some
methods, this will cause what we have called calibration
bias, but other methods (e.g., mixture analysis) can allow for
this lack of representativeness and thus avoid this bias. Sec-
ond, the relationship between age and the chosen predictors
may be different from that in the target population. For ex-
ample, the mean otolith weight of fish for a given age may
differ between the calibration sample and the target popula-
tion. This sort of variation has been demonstrated in the spa-
tial domain (Anderson et al. 1992; Worthington et al. 1995a;
Pilling et al. 2003), so we should be particularly cautious
about using a calibration sample in an area other than that in
which it was collected. Whether temporal variation is as
much of a problem has not been as widely investigated (at
least for otolith measurements), but it would be prudent to
recalibrate each year until this has been shown to be unnec-
essary. Pilling et al. (2003) found no significant difference in
the otolith weight – age relationships in two samples of
Lethrinus mahensa collected from the same location 2 years
apart. There are many examples of annual variations in mean
length at age, so annual calibration samples are likely to be
needed when body length is one of the predictors. The need
for recalibration means that we cannot avoid completely the
costs involved in maintaining the expertise required for an-
nulus count age estimation. However, the number of people
who must have that skill might be reduced, as might the time
they spend in counting annuli for each species.
An interesting question is whether there is an advantage to

using a length-stratified calibration sample. An argument in
favour of this sample structure is that it is easier to achieve,
from a logistical point of view, than a simple random sam-
ple. This may be why length-stratified samples are so widely
used for age–length keys despite the finding by Kimura
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(1977) that simple random samples produce better estimates
of proportions at age. An argument in favour of simple ran-
dom calibration samples in the present context is that they
provide two types of information — proportions at age and
the age–predictor relationship — whereas length-stratified
samples provide only the latter type. Also, some methods of
inference (e.g., mixture analysis) can be adjusted for length-
stratified samples, whereas most cannot.
In conclusion, we believe that there is clear scope to re-

duce the cost of fisheries research by inferring age from
otolith measurements. However, it is important that we are
aware of what we are trying to achieve (e.g., assigning ages
to individual fish or estimating proportions at age) and that
we carry out cost–benefit analyses for each fish stock to find
the best method of inference and to ensure that there are real
cost-savings to be made.
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Appendix A. Bias in the regression model

In this appendix, we derive the equations used in Fig. 4.
The text preceding a description of the results in this figure
includes the assumptions on which these equations are based.
If we define WO and A to be the mean otolith measurement

and age in the calibration sample, then the age, �A, predicted by
the regression method is given by � ( )A A W W= + −β O O , where
the formula for β depends on which regression model is used:
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where E{X} denotes the expectation, or mean, of X.
Because our equations are approximations for a large cali-

bration sample, we can assume that there is no appreciable
difference between the actual sample means WO and A and
their expected values. With this assumption, it is easy to
show that A p AA c A= Σ , , W a bAO = + , E A A{( ) }− 2 =
ΣA c A Ap A A V, ( )− =2 , E W W b V VA{( ) } ( )O O
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in passing that the proportion of variance explained by the re-
gression is given by
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A fish from the production sample will be assigned to age
A0 if A A A0 00.5 0.5− ≤ < +� , which is the same as f (A0 –
0.5) ≤ WO < f (A0 + 0.5), where f x a bA x A( ) ( )/= + + − β.
Therefore, the proportion of fish in this sample that is as-
signed age A0 is given by
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and F is the cumulative distribution function of the standard
normal distribution.
It is of interest to note that pp,A does not depend at all on

the parameters a and b for any of the regression models.

Appendix B. Approximate confidence
intervals

In this appendix, we describe the method of calculating
the approximate 95% confidence intervals in Fig. 6. These
were based on the assumption that our estimator of p1 is ap-
proximately normally distributed with mean ~p1 and standard
deviation σ (~p1 will differ from the true value p1 if the esti-
mator is biased). With this assumption, an approximate in-
terval for bias is straightforwardly (bias – 2s, bias + 2s),
where s is the estimated standard error of the bias,
s p p N Nk k≈ − −[ ( � ) /( ( ))],Σ 1 1

2 0.51 , p1 is the mean of � ,p k1 , and
N = 500 is the number of simulated data sets. Further, preci-
sion2 is distributed according to σ2/N times a χ2 distribution
with N – 1 degrees of freedom. Therefore, a 95% confidence
interval for precision is given by

( / ), ( / ), . , .χ σ χ σN NN N− −
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where XN P−1,
2 is the Pth quantile of the χ2 distribution with

N – 1 degrees of freedom. In estimating this interval, we re-
place σ2/N by s.
With our normality assumption, RMSE2 is distributed accord-

ing to σ2/N times a noncentral χ2 distribution with N degrees of
freedom and noncentrality parameter λ σ= −N p p(~ ) /1 1

2 2. This
distribution may be approximated by (σ2/N)(cX + b), where X is
a χ2 distribution with f degrees of freedom, c = (n + 3λ)/(n +
2λ), b = –λ2/(n + 3λ), and f = n + λ2(3n + 8λ)/(n + 3λ)2 (this is
Pearson’s approximation; see Johnson and Kotz 1970, p. 139).
Therefore, an approximate 95% confidence interval for RMSE is
given by
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In estimating this interval, we again replace σ2/N by s and
(~ )p p1 1− by the estimated bias.
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