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Abstract: The need to validate methods of ageing fish is widely accepted and several approaches to validation have been
used. Most validations are essentially informal tests, using graphical methods, of the null hypothesis of zero bias in the
age estimates. It is argued that it would be more useful to estimate a confidence interval for this bias. This would provide
both a quantitative measure of the strength of the validation and a means of formalising the hypothesis test. A method of
estimating this confidence interval is proposed for validations based on bomb radiocarbon, and this is illustrated using data
for bluenose (Hyperoglyphe antarctica) and haddock (Melanogrammus aeglefinus).

Résumé : La nécessité de valider les méthodes de détermination de l’âge chez les poissons est universellement reconnue
et plusieurs méthodologies de validation ont été utilisées. La plupart des validations sont essentiellement des tests infor-
mels, à l’aide de méthodes graphiques, de l’hypothèse nulle voulant qu’il n’y ait aucun biais dans les estimations de l’âge.
On a proposé qu’il serait plus utile d’estimer un intervalle de confiance pour ce biais. Cela fournirait à la fois une mesure
quantitative de la force de la validation et une manière de formaliser le test d’hypothèse. Nous proposons une méthode
pour estimer cet intervalle de confiance pour les validations qui est basée sur le radiocarbone des essais nucléaires et nous
l’illustrons avec des données sur la rouffe antarctique (Hyperoglyphe antarctica) et l’aiglefin (Melanogrammus aeglefinus).

[Traduit par la Rédaction]

Introduction
The ageing of large numbers of fish is a fundamental part

of the assessment, and thus management, of many fisheries
throughout the world (Morison et al. 1998). The methods
used (the counting of annual rings in otoliths, scales, or other
hard parts) are simple in principle but often difficult in prac-
tice, requiring great skill in preparing samples for counting
and in distinguishing annual rings from other marks. Inaccu-
rate age estimates could compromise stock assessments, so it
is important that ageing methods be validated (Beamish and
McFarlane 1983; Campana 2001). Moreover, validations
must be carried out for each new species and sometimes
even for different stocks of the same species, because some
aspects of successful ageing procedures can be very species-
specific. A variety of validation methods have been used, in-
cluding marginal increment analysis (Cappo et al. 2000),
chemical marking of otoliths at tagging (Fowler 1990), radio-
chemical dating (Andrews et al. 2009), and bomb radiocar-
bon (Kalish 1993).

In this paper, we first argue that age validation assesses
the possibility of bias in age estimates and that most valida-

tions are effectively informal tests of the null hypothesis of
no bias. We suggest that validations would be more useful if
they focussed on the estimation of bias rather than on hy-
pothesis testing, and propose a method of achieving this for
validations based on bomb radiocarbon. The method is illus-
trated using data for bluenose (Hyperoglyphe antarctica) and
haddock (Melanogrammus aeglefinus).

What is needed from an age validation?
Loosely speaking, what is needed from a validation of an

ageing method for a particular fish species (or stock) is a de-
termination of whether the age estimates produced are, on
average, approximately correct. The two phrases ‘‘on aver-
age’’ and ‘‘approximately’’ are important here. The former is
necessary because even with the most rigorously controlled
ageing procedures, it is common to find differences among
repeated age estimates for the same fish. Thus we know that
not all age estimates will be correct. All that we can hope is
that they will be correct on average. That is to say, they will
be unbiased: there will not be a consistent tendency to over-
or under-estimate age. Note that our focus in age validations
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is on bias in the ageing method; we are not concerned with
the precision of estimated ages (i.e., how similar repeated
readings of the same otolith are). The word ‘‘approximately’’
is necessary because we can never expect to say that an age-
ing method is completely without bias. To do so would be to
claim to have proven the null hypothesis. However, although
a validation cannot say that an ageing method is unbiased, it
might allow us to say how large any bias might be.

Most ageing studies implicitly treat validation as an exer-
cise in hypothesis testing. The null hypothesis apparently
being tested (but not usually explicitly stated) is that the
ageing method is unbiased. The two possible conclusions
from most validation studies — that the method was, or
was not, validated — are equivalent to saying that this null
hypothesis was not, or was, rejected. Testing of this hypoth-
esis is typically informal (i.e., nonquantitative) and often
graphically based. Consider two otolith-based examples typ-
ical of the recent literature. In both of these, the validation is
achieved by showing that the plotted data fit some expected
pattern. In the first example (Fig. 1), a plot of mean mar-
ginal increment against month was treated as providing vali-
dation because it demonstrated an annual cycle, with a new
annulus apparently forming in the middle of the year (when
the marginal increment is smallest). In the second (Fig. 2),
the validation depended on the fact that plotted ratios of
210Pb to 226Ra were found to lie near a predicted curve. In
what follows, we are not questioning the correctness of
these two validations; we wish only to draw attention to typ-
ical methods of inference in age validations.

There are two drawbacks to this type of graphical valida-
tion. First, it is informal: no level of statistical significance is
associated with the acceptance or rejection of the null hy-
pothesis, and no objective criteria are provided to help decide
how close the plotted data need to be to the expected pattern
to avoid rejecting the null hypothesis (and thus failing to val-
idate the ageing method). For example, it is not clear how
distant the points in Fig. 2 could have been from the broken
line before the validation would have failed. What would
have been concluded if most points were near the line but a

few were well away from it? In Fig. 1, the marginal incre-
ment varied from about 30% in June to about 100% in Janu-
ary. Would the validation have failed if the variation had
only been from 45% to 70%, or 55% to 65%, or if the mar-
ginal increment for September had been substantially lower
than that for August? In these examples (as in most pub-
lished validations), the conclusion that the ageing method
was validated was purely subjective. The second drawback
is that the graphical approach provides no quantitative meas-
ure of any bias that might have been present in the ageing
method. Clearly, a very small ageing bias (say 1%) could
not be ruled out in either of our examples. But can we be
confident that there was not a bias of 10% (or 20%, or 30%)
in these ageing methods? Another way of expressing this
second drawback is to say that the graphical approach pro-
vides no quantitative measure of the strength of a validation.
It seems reasonable to conclude that the strength of a radio-
metric validation (like that in Fig. 2) is related in some way
to the closeness of the sample points to the line, but there is
no obvious quantitative measure of that strength.

We suggest that what is most needed from an age valida-
tion is an estimated 95% confidence interval for bias, rather
than a test of the hypothesis of no bias. The width of this
interval would provide a measure of the strength of the vali-
dation: a strong validation would produce a narrow confi-
dence interval centred near zero, e.g., (–4%, +6%), and a
weak validation would produce a wide interval, e.g.,
(–25%, +15%). This would take us away from an implausi-
ble black-and-white world view in which ageing methods
could be classified only as good (validated), bad (not vali-
dated), or unknown (unvalidated) to one in which shades of
grey are acknowledged in the form of strong and weak vali-
dations. This confidence interval would also allow us to for-
malise the associated hypothesis test in that the null
hypothesis would be rejected (at the 5% significance level)
if the 95% confidence interval excluded 0%.

In the remainder of this paper we propose a method of es-
timating such a confidence interval when the validation is
based on bomb radiocarbon data. Initially, we will assume

Fig. 1. An example of age validation using otolith marginal incre-
ments: monthly mean percent marginal increment; vertical lines re-
present ±1 standard error (SE) and the numbers above them are
sample sizes (replotted from fig. 5 in Franks et al. 1999).

Fig. 2. An example of age validation using radiometrics: the ratio
of 210Pb to 226Ra plotted against sample age, with horizontal and
vertical error bars, and the expected ingrowth curve (broken line)
(replotted from fig. 4 in Stevens et al. 2004). Triangles, juvenile
age groups; circles, female age groups; squares, male age groups.

Francis et al. 1399

Published by NRC Research Press



that any ageing bias is proportional to the true age, and thus
may be expressed as a percentage. For example, a bias
of +10% means that, on average, the estimated age is 10%
higher than the true age. In a later section, we will discuss
why we made this assumption and how our approach to val-
idation could be modified to accommodate other models of
bias. Before presenting our proposed approach, we will de-
scribe two data sets that will be used to illustrate it.

Two data sets
Bomb radiocarbon validation of an ageing method for a

particular species requires a pair of data sets: (i) the test
data set includes estimated ages and the associated radiocar-
bon values for this species and (ii) the reference data set in-
cludes known ages and radiocarbon values for another
species (or, sometimes, the same species). We will use two
such test–reference pairs. In the first (Fig. 3a), the test data
are for bluenose (Table 1, with details in Appendix A) and
the reference data set is that for snapper (Pagrus auratus)
presented by Kalish (1993; table 1), with ageing-error esti-
mates derived for the present study (see Appendix B) and
assumed sample (core) age 0. In the second pair (Fig. 3b),
the test data are for adult haddock (the test data in table 1
of Campana 1997, with sample (core) age 0.5 years and as-
sumed ageing error SE 1 year) and the reference data set is
the Northwest Atlantic (NWA) set developed, using juvenile
haddock, redfish (Sebastes spp.), and yellowtail flounder
(Limanda ferruginea) of known age, by Campana et al.
(2008) (Table 2).

Both pairs of data sets show, at least approximately, the
pattern expected for a successful validation based on bomb
radiocarbon (i.e., the pattern to which the data must conform
if the ageing method is to be validated). This pattern is asso-
ciated with the atmospheric testing of nuclear weapons in
the 1950s and 1960s, which produced a rapid rise in the
concentration of atmospheric 14C (measured as D14C). Both
test and reference data sets are expected to show a similar
rapid rise in D14C beginning in the same year. The timing
of this rise will often be somewhat later than that for the at-
mosphere because of the time taken for 14C to migrate from
the atmosphere to the fish’s environment (i.e., the adjacent
water mass) and from there into the otolith. Subsequent
D14C levels in the aquatic environment decline gradually,
due not to radioactive decay (the half-life of radiocarbon is
5730 years), but to gradual sequestration of the carbon out
of the water column (e.g., into the sediments or deeper
water). Both of our example data sets show low levels of
14C before the late 1950s and a sudden rise in the 1960s
(Fig. 3). What is crucial to bomb radiocarbon validations is
that the test and reference data sets should agree during the
period of rapid increase of 14C. For that reason, our pro-
posed approach to validation will ignore data before and
after that period (see below).

The effect of ageing bias on bomb radiocarbon plots
Because validation concerns the existence (or extent) of

bias in age estimates, it is of interest to ask what effect any
such bias would have on plots such as Fig. 3. The effect, as
was shown by Kastelle et al. (2008), is to shift the test data
points horizontally. This is illustrated in Fig. 4, which shows

how we would change our plotting of the test data if we be-
lieved that the ages were biased. Note that because bias is
assumed to be proportional to age, the amount of horizontal
shift is different for different points. For example, fish
BNS2 and BNS13 both have sample year 1960 (though
they were sampled at very different ages in different years;
see Table 1), but when replotted after correction for a 20%
bias, they are shifted to 1964 and 1967, respectively (see
Fig. 4c).

We can use plots such as Fig. 4 to make informal infer-
ences about what levels of ageing bias are plausible. For ex-
ample, we can probably rule out a bias of –20% for
bluenose because that results in most of the test data points
from the period of increasing 14C being well to the left of
the reference line (Fig. 4a). A bias of +20% is not so easy
to rule out. Although this puts almost all test points to the
right of the reference line, they are not far from the line
(Fig. 4c). In fact, on average, they are about as close to the
reference line (but on the other side of it) as those in
Fig. 4b. Thus we might infer that biases of 0% and +20%
are approximately equally plausible for bluenose ageing and
that our best estimate of ageing bias for this species might
be near +10%.

Our proposed approach provides a way to formalise such
inferences. For example, it will allow us to determine how
likely it is that the pattern shown in Fig. 4b (with most data
points just to the left of the reference line) could occur by
chance (because of random sampling errors in D14C and
age) if the ageing were unbiased. If we were to find that
such a pattern was very unlikely to occur by chance, we
would reject the null hypothesis of no bias.

Proposed approach to bomb radiocarbon age
validation

A fundamental assumption underlying our approach is
that the test and reference species occupy the same, or sim-

Fig. 3. Two examples of test–reference pairs of data sets (solid
squares are test points; open circles are reference points) used in
bomb radiocarbon age validation: (a) bluenose (Hyperoglyphe ant-
arctica) – snapper (Pagrus auratus) (test–reference), and (b) had-
dock (Melanogrammus aeglefinus) – Northwest Atlantic (NWA).
For each plotted point, sample year is the estimated date of forma-
tion of the otolith material that was analysed to produce the D14C
value, and error bars are ± 2 SE.
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ilar, environments, so that the carbon incorporated into the
otoliths of the two species in the same year will contain the
same proportion of 14C. We discuss below what can be done
when this ‘‘same environment’’ assumption does not hold.

The first step in our proposed approach is to restrict both
data sets. The main aim of this restriction is to include only
those points for which D14C is rapidly increasing because,
as pointed out above, a bomb radiocarbon validation de-
pends on agreement between these parts of the test and data
sets (e.g., for the bluenose–snapper data set, we considered
only those points for which the sample year lay between
1955 and 1972, inclusive). In the years before and after this
period of rapid increase, D14C values change too slowly to
allow for effective discrimination in the year of deposition.

A secondary requirement of this restriction is that it must
exclude any test point whose D14C value lies outside the
range of the D14C values in the restricted set of reference
points (because we cannot say whether such a test point is
to the left or the right of the reference line).

In describing our proposed approach, we will focus on the
main concepts rather than the details (which are given in
Appendix C), illustrating these concepts using our two data
sets. First, we define a statistic, h, which measures the hori-
zontal displacement of the test data relative to the reference
line in plots such as Fig. 4. The definition is simple: h = me-
dian(hi), where hi is the horizontal distance of the ith test
data point from the reference curve. It is important that h is
defined in terms of horizontal distance (rather than shortest
distance or vertical distance) because our aim is to detect
ageing bias, and this bias causes a horizontal displacement.
The distance is measured in units of standard error so as to
give less weight to data points with larger uncertainty (see
Appendix C). If the points are mostly to the left (or the
right) of the line, h will be negative (or positive). For exam-
ple, the calculated values of h for the three panels of Fig. 4
are –5.27, –0.97, and 1.76 for assumed biases of –20%, 0%,
and +20%, respectively (Table 3 extends this calculation to
further levels of assumed bias).

We can use h to refine the simple inferences described
above. For example, our best estimate of bias should be that
for which h = 0 (because this means that the test data are
exactly centred on the reference line). Interpolating from
the values in Table 3, we see that the best estimate of bias
for the bluenose ageing method is about +6%. We can also
see that, contrary to what was suggested above, a bias of 0%
is actually more plausible than one of +20%, because its as-
sociated value of h (–0.97) is closer to zero than that for
20% bias (1.76).

To be able to say how plausible a particular level of bias
might be, we need to know how far h could deviate from 0
as a result of sampling error. We quantify this using a simu-
lation experiment. For the purposes of this experiment, we
assume that a line fitted to the reference data set represents
the ‘‘truth’’ for both the reference and test species. Thus, in

Table 1. Radiocarbon and age data for core samples from bluenose (Hyperoglyphe antarctica) otoliths (for details
of sample collection and preparation, see Appendix A).

Sample
Catch
year

Fish age
(years)

SE of agea

(years)
Sample ageb

(years) D14C SE of D14C Sample yearc

B01 1986 55 1.5 0 –71.8 4.7 1931
B05 1980 45 1.0 0 –68.3 4.8 1935
B08 1980 48 1.5 0 –69.3 4.7 1932
B10 1980 35 1.5 0 –67.7 4.9 1945
B14 1980 60 1.5 0 –64.5 4.6 1920
BNS2 1980 22 1.0 2 –34.5 5.4 1960
BNS5 1980 13 1.0 2 57.7 5.5 1969
BNS6 1980 21 1.5 2 –8.6 7.5 1961
BNS7 1980 18 1.0 2 35.6 4.4 1964
BNS8 1980 14 1.0 2 78.7 5.2 1968
BNS13 1999 41 1.0 2 54.0 3.6 1960
BNS15 1985 3 0.5 2 113.0 5.3 1984

aEstimated informally by the otolith reader as half of the maximum likely error.
bEstimated age of the fish at which 50% of the material in the core sample from the otolith was formed.
cEstimated year of formation of the otolith core, calculated as catch year – fish age + sample age.

Table 2. Radiocarbon and age data for the Northwest Atlantic
(NWA) reference data set of Campana et al. (2008).

Catch
year

Fish age
(years)

SE of age
(years)

Sample
age (years) D14C

SE of
D14C

1954 1 0.5 0.5 –67.3 7
1957 1 0.5 0.5 –54.5 7
1959 1 0.5 0.5 –53 7
1961 1 0.5 0.5 –27.8 7
1964 1 0.5 0.5 3.6 7
1965 1 0.5 0.5 26.4 7
1966 1 0.5 0.5 58.9 7
1967 1 0.5 0.5 58.2 7
1968 1 0.5 0.5 65.5 7
1969 1 0.5 0.5 50.6 7
1970 1 0.5 0.5 68 7
1971 1 0.5 0.5 63.7 7
1972 1 0.5 0.5 55.9 7
1973 1 0.5 0.5 60.4 7
1976 1 0.5 0.5 53.9 7
1977 1 0.5 0.5 52.8 7
1982 1 0.5 0.5 58 7
1983 1 0.5 0.5 65.9 7
1985 1 0.5 0.5 47.6 7
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this experiment, the ‘‘true’’ positions of all our test and
reference data points lie on this line, although the observed
positions deviate from the line because of measurement er-
ror (in both age and D14C). The ‘‘true’’ position of each test
and reference data point is assumed to be the point on the
reference line that is ‘‘closest’’ to the actual point (‘‘closest’’
is defined in terms of the standard errors for age and
D14C — see Appendix C). For the bluenose–snapper data,
the ‘‘truth’’ assumed for the simulation was represented by
the line and solid squares in Fig. 5a.

Five-thousand test–reference data sets are simulated by
adding normal random errors to the ‘‘true’’ points. The size
of the added observation errors is determined by the stand-
ard errors for the real data (e.g., those given in Table 1).
Each simulated data set may be thought of as an example
of what could have been observed given the assumed
‘‘truth’’; we show an example of a simulated data set for
bluenose–snapper (Fig. 5b). Note that the simulated refer-
ence line in this example differs slightly from the ‘‘true’’
one (because of measurement errors), and by chance, all but
one of the simulated test data points lie to the right of this
line. The statistic h is calculated for each simulated data
set, and the resulting 5000 values of h ranged from –3.2 to
3.2, with 95% of them lying between –1.51 and 1.55
(Fig. 6). This tells us that if bluenose ageing is unbiased,
we can be 95% confident that the value of h that we calcu-
late from our data will lie between –1.51 and 1.55.

Our final step involves converting this 95% confidence
interval for h into a confidence interval for bias. We do this
for our bluenose–snapper example simply by interpolating to
find the values of bias that correspond to h values of –1.51
and 1.55 (Table 3). These are –3% and +19%, respectively

(to the nearest whole percentage point), so our 95% confi-
dence interval for bias is (–3%, +19%).

The logic of this final step may not be immediately clear,
so here is a rationale for it. Suppose we want to evaluate the
possibility that bluenose ageing has a bias of, say, +20%. If

Fig. 4. The effect of an assumed ageing bias of (a) –20%, (b) 0%, or (c) +20% on the relationship between the bluenose (Hyperoglyphe
antarctica) test data (solid squares) and a line joining the (snapper (Pagrus auratus)) reference data (line). The reference line is the same in
each panel; for panels (a) and (c), the sample year for each test data point was recalculated (using the formula in footnote c of Table 1) after
the tabulated fish age was corrected for the assumed bias (by dividing by 0.8 or 1.2 for a bias of –20% or 20%, respectively); in panel (b),
the test data points are the same as in Fig. 3a.

Table 3. The effect of assumed bias on the statistic h, which measures the extent to which the
bluenose (Hyperoglyphe antarctica) test data points tend to be to the left (h < 0) or right (h > 0)
of the snapper (Pagrus auratus) reference curve in plots like those in Fig. 4.

Assumed bias (%)

–20 –15 –10 –5 0 +5 +10 +15 +20

h –5.27 –3.93 –2.64 –1.81 –0.97 –0.14 0.69 1.03 1.76

Fig. 5. Illustration of the simulation experiment used to calculate a
95% confidence interval for ageing bias for bluenose (Hyperoglyphe
antarctica): (a) the ‘‘true’’ data, derived from Fig. 3a (the reference
line was fitted to the snapper (Pagrus auratus) data points), re-
stricted to the years during which D14C increased rapidly; also
shown is how each ‘‘true’’ test point (solid square) in the simulation
experiment is the point on this line that is closest to an actual test
point (open square); (b) simulated data generated by adding random
errors to the ‘‘true’’ data (to aid comparison, the true reference line
from panel (a) is added to this panel as a broken line).

1402 Can. J. Fish. Aquat. Sci. Vol. 67, 2010

Published by NRC Research Press



we believed that the bias was +20%, we would replot our
data after correcting for this bias, and this would produce
Fig. 4c. If our belief were right, then the corrected ages
would be unbiased. Now, our simulation experiment has
demonstrated that, if the ages are unbiased, we can be 95%
confident that the h value for this plot will lie in the interval
(–1.51, 1.55). Because the h value for Fig. 4c is 1.76, which
is outside this confidence interval, we can reject (with 95%
confidence) the possibility that the bias is as high as +20%.
Repeating this argument for other possible values of bias
leads us to the bias confidence interval (–3%, +19%).

The fact that this bias confidence interval is so wide is
mainly due to of the small sample sizes in the restricted
data sets (eight reference points and six test points), but
also depends on the size of the standard errors. For example,
had the snapper data been measured without error (in either
age or D14C), the estimated bias confidence interval for
bluenose would have been reduced from (–3%, +19%) to
(–1%, +16%).

Application of our approach to the haddock–NWA data
set (restricted to sample years 1953–1970) produced 95%
confidence intervals of (–1.04, 1.93) for h and (–23%, –3%)
for bias (Fig. 7). Thus we reject the null hypothesis of no
ageing bias for haddock. Of course, this rejection is condi-
tional on the assumption that ageing bias is proportional to
the true age (see below for a discussion of other bias mod-
els). It is not surprising that the best estimate of bias, –17%,
is negative, as the majority of the haddock data points lie to
the right of the reference data (Fig. 3b).

What did seem surprising was that the distribution of h
for haddock–NWA was not centred near zero (Fig. 7a). The
reasons for this are quite complex. Recall that the simulation
experiment that produced this distribution started by associ-
ating a ‘‘true’’ test data point, lying on the reference line,
with each observed point (as illustrated for bluenose–snapper
in Fig. 5a). Then, for each of these ‘‘true’’ test data points,
5000 simulated points were generated by adding random

observation error. Overall, we would expect about 50% of
these simulated points to fall to the right of the reference
line. However, the actual percentage that falls to the right
depends on the shape of the reference line near each
‘‘true’’ point. The percentage is higher if this shape is con-
vex downwards and lower if it is convex upwards. By
chance, it happened that most of the ‘‘true’’ haddock test
points were in the former category. Thus, simulated test
points tended to be to the right of the reference line, which
caused the mean h value to be positive.

Some weaknesses of the proposed approach
It must be acknowledged that our proposed approach has

several weaknesses, which are exacerbated by the small
sample sizes typical of bomb radiocarbon validation data
sets. Although our approach is intended to be as objective
as possible, we have not been able to avoid all subjective,
or arbitrary, decisions. One such decision is the range of
sample years to include when restricting the data set to those
points for which D14C is rapidly increasing. The combina-
tion of measurement error (in ages and D14C) and small
sample sizes means that there is no clear-cut point at which
D14C levels change from being more or less stable to rap-
idly increasing (or vice versa). Fortunately, the bluenose–
snapper analysis is not sensitive to the range of sample years
used (Table 4a). Another arbitrary decision was the choice
of a set of bias values at which to evaluate h. This matters
because the relationship between bias and h is not com-
pletely smooth (a consequence of small sample sizes). How-
ever, it makes little difference to our estimated bias
confidence interval if we use a bias step size of 1% or 2%,
rather than the 5% used in Table 3 (Table 4b). Also, the re-
sults of any simulation experiment will depend, to some ex-
tent, on the random number seed (which determines the
sequence of random numbers that is used to generate simu-

Fig. 6. Histogram of values of the statistic h for each of 5000 si-
mulated bluenose (Hyperoglyphe antarctica) – snapper (Pagrus
auratus) data sets. Vertical broken lines show a 95% confidence
interval for h (defined by the 0.025 and 0.975 quantiles of the set of
h values).

Fig. 7. Some steps in the calculation of a bias 95% confidence in-
terval using the haddock (Melanogrammus aeglefinus) – Northwest
Atlantic (NWA) data sets: (a) the distribution of h from the simu-
lation experiment, with broken lines showing the 95% confidence
interval for h (–1.04, 1.93); and (b) the calculation of the bias con-
fidence interval (–23%, –3%) (the solid line shows the calculated
relationship between h and bias; the broken lines connect the two
confidence intervals; and the dotted line shows how the best esti-
mate of bias (–17%) is that corresponding to h = 0).
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lated data points). A different random number seed leads to
a different distribution for h in Fig. 6 and thus different con-
fidence intervals for h and bias. When the simulations were
repeated with four different seeds, the effect on the bias con-
fidence interval was small (Table 4c). It is because of the
uncertainties illustrated in Table 4 that we chose to round
the bounds of our bias confidence intervals to the nearest
whole percentage point.

Another arbitrary decision was the choice of method used
to fit a line to a set of observed or simulated reference points
(see algorithm A, Appendix C). This choice will affect the
estimated bias confidence interval, particularly when sample
sizes are small. The method we chose, R function ‘‘isoreg’’
(http://www.r-project.org/), has two advantages. First, the fit-
ted line is always increasing, which avoids ambiguity in the
calculation of h. Second, unlike locally weighted regression
procedures such as LOWESS (Cleveland 1981), it does not
require the user to make a subjective decision about the de-
gree of smoothing to be applied. Initial exploratory analyses
using LOWESS showed that this procedure was unsuitable
for present purposes because the estimated confidence inter-
val for bias was found to be strongly affected by the degree
of smoothing chosen by the user.

Error in age estimation ought to apply to both the fish age
and the sample age. However, in simulating data, we
ignored error in the sample ages (see step 5.1, Appendix C).
This was done because each simulated data set was intended
to be an example of what could have been observed, given
the simulation assumptions. In our data sets, the calculated
sample years were always integers for the bluenose–snapper
data (because ages and sample ages were integers) and al-
ways half years (e.g., 1968.5, 1969.5) for the haddock–
NWA data (because ages were integers, and sample ages
were all 0.5 years). It seemed important that the sample
years for the simulated data sets should have the same prop-
erties. We achieved this by (i) adding ageing errors to the
‘‘true’’ ages, (ii) rounding the resulting ages to the nearest
year, and (iii) calculating the sample years using these simu-
lated ages and the observed catch years and sample ages.

Other models for ageing bias
The proportional model for ageing bias, which we have as-

sumed above, has only one parameter: the percentage bias.
The only other one-parameter bias model assumes constant
bias. For example, we may assume that the average difference
between estimated age and true age is +1 year, independent
of the true age. Of these two models, the former seems most
widely applicable for fish ageing and is most consistent with
the widespread use of the coefficient of variation and average

percentage error in quantifying ageing precision (Campana
2001). Certainly, when the ages in a data set cover a wide
range (as they do for bluenose — see Table 1), it would be
unreasonable to assume that bias is independent of age. An
argument supporting the proportional model considers the
process of ageing as a series of decisions as to which marks
in an otolith are annual rings and which are false. The older a
fish is, the more decisions the otolith reader must make. A
reader who is overly conservative about these decisions (i.e.,
too reluctant to count a ring as annual) will typically under-
estimate age. If, for example, they label 10% of annual rings
as false, their estimates will have a bias of +10%. The con-
stant bias model is more plausible for a data set with a nar-
row range of ages. However, note that the narrower the
range of ages is, the less there is to choose between the two
models (e.g., if all fish in a sample are aged close to 20 years,
there is little difference between a proportional bias of –10%
and a constant bias of –2 years).

It would not be difficult to modify our approach to use a
constant bias model. However, it should be noted that, given
the small sample sizes that are typical in bomb validation
data sets (particularly when these data sets are restricted to
the period of rapidly rising D14C), it will often not be possi-
ble to decide which bias model is superior. For example, a
plot of the haddock–NWA data suggests that there is little
to choose between our estimated proportional bias of –17%
for haddock and a constant bias of –3 years (Fig. 8).

These one-parameter models are probably unrealistically
simple for most species, because the clarity of annual rings

Table 4. Effect, on the estimated lower and upper bounds of a 95% confidence interval for bias in bluenose (Hyperoglyphe antarctica)
ageing, of changing some arbitrary decisions. The original estimated bounds are given, together with estimates using (a) different ranges
of sample years for the restricted data sets (the original range was 1955–1972), (b) different bias step sizes for Table 3 (the original step
size was 5%), and (c) different random number seeds.

(a) Range of sample years (b) Bias step size (%) (c) Different random number seeds

Original 1950–1980 1950–1972 1955–1980 1 2
Lower (%) –3.2 –3.4 –3.2 –3.4 –2.9 –3.2 –3.1 –3.2 –3.3 –3.2
Upper (%) +18.6 +18.9 +18.5 +18.2 +17.7 +18.2 +18.7 +18.2 +18.5 +18.9

Fig. 8. The haddock (Melanogrammus aeglefinus) – Northwest
Atlantic (NWA) data set replotted assuming (a) a proportional bias
of –17% (as estimated in this study) and (b) a constant bias
of –3 years.
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in fish otoliths often varies with ring count. Thus, it would
often be more realistic to describe bias as varying with age.
For example, in the original analysis of the haddock data,
Campana (1997) concluded that there was no significant
bias up to age 10 years but that there was a negative bias of
2–3 years between ages 14 and 22 years. Such a model
would require at least three parameters (two for the levels
of bias for ‘‘young’’ and ‘‘old’’ fish and one for the age at
which fish became ‘‘old’’). However, when we are fitting a
model to data (as is done in our approach to bomb radiocar-
bon validation), we should apply Occam’s razor and use the
simplest model consistent with the data. We believe that it
would be very rare to find a bomb radiocarbon data set that
allowed the estimation of more than one parameter for age-
ing bias.

Discussion
We have argued that the usual approaches to validating

fish ageing methods are poor because (i) they rely on subjec-
tive decisions (usually about whether or not some plotted
data fit an expected pattern) and (ii) they provide no measure
of the strength of the validation. These approaches foster an
implausible black-and-white world view in which ageing
methods may be classified only as good (validated), bad (not
validated), or unknown (unvalidated). The approach that we
propose, for validations based on bomb radiocarbon data,
avoids both these criticisms by estimating a 95% confidence
interval for bias. This allows a formal test of the null hypoth-
esis that the ageing method is unbiased (the hypothesis is re-
jected if the confidence interval excludes 0). Also, the width
of the confidence interval provides a measure of the strength
of the validation and thus allows a more realistic world view
in which shades of grey are perceptible in the form of strong
and weak validations. For example, although our analysis of
the bluenose–snapper data can be said to validate the blue-
nose ageing method, this validation is weak because the con-
fidence interval (–3%, +19%) is broad. It is important that
people using this validated ageing method know that their es-
timated ages are probably positively biased and that this bias
could well be over 10%. For example, in a stock assessment
setting, they may want to conduct model runs with bias-
adjusted ages to see how sensitive their assessment is to this
bias. Even when the validation fails (i.e., the null hypothesis
of no bias is rejected), as happened with the haddock–NWA
data, it is useful to know how wide the bias confidence inter-
val is. Although our best estimate for bias in haddock ages
is –17%, this estimate is uncertain and the actual bias could
be considerably smaller than this.

What validation can, or should, be done when our ‘‘same
environment’’ assumption (see above) does not hold? This is
a contentious question about which we have not reached
consensus. Suppose, for example, that the test and reference
data sets both show a rapid rise in D14C but that this rise
starts and (or) ends at different D14C levels in the two data
sets. This difference of starting and (or) ending levels of
D14C indicates that the test and reference species inhabit
different environments, so our ‘‘same environment’’ assump-
tion is violated. In this situation, some researchers have re-
scaled the data so that the test and reference levels of D14C
agree in the periods both before and after the rise. They then

consider the test species ageing method to be validated if the
rescaled data sets are in agreement about the timing of the
rapid rise in D14C. The question is, is such a validation le-
gitimate? We are in agreement that it is not appropriate to
use rescaled data in our approach to formal validation; how-
ever, we are not in agreement about whether it is legitimate
to rescale in a less formal validation.

Two related studies
We offer comments on two studies that are similar to ours

in that they address the problem of formalising age valida-
tions. Okamura and Semba (2009) proposed a formal
method of inference for validations based on marginal incre-
ments. Their inference was set in a different framework
from that of most validation studies: model selection rather
than hypothesis testing. They provided an objective way
(the Akaike information criterion (AIC)) of choosing be-
tween three alternative models of ring formation: annual, bi-
annual, and acyclic. The ageing method would be
considered validated if the first model was selected. This ap-
proach is a step in the right direction. It provides an objec-
tive way of dealing with the situation in which the main
uncertainty is about the periodicity of ring formation. How-
ever, it does not deal well with the perhaps more common
situation in which ring formation is believed to be annual,
but the annual rings are not always clear. Here, the main un-
certainty concerns bias. The direction and extent of any bias
depends on the relative frequency of the two types of mis-
count: annual rings that are not counted because they are un-
clear, and false rings that are wrongly interpreted as annual.
The method of Okamura and Semba (2009) will not quantify
this bias and will not detect it unless it is extreme.

Kastelle et al. (2008) suggested three new statistical meth-
ods for use in bomb radiocarbon validations. We comment
only on the second of these methods. This is quite similar
to the approach proposed here in that it involves calculating
a statistic, SSR (analogous to our h), that measures the dis-
tance between the test and reference data sets as a function
of assumed ageing bias. The best estimate of bias is that as-
sociated with the smallest value of SSR (cf. our best esti-
mate at h = 0). There are three differences between this
approach and ours that are of little consequence, but worth
mentioning for clarity. First, it uses constant bias rather
than proportional bias. This is irrelevant because both meth-
ods could be modified to use a different bias model. Second,
the labelling of bias by Kastelle et al. (2008) is inverted
(e.g., what is labelled as an age bias of +5 years in their ta-
ble 2 actually means a negative bias, or underaging, as is
clear from the black drum results on their p. 1106). Third,
the x variable in their plots (and thus in their calculation of
SSR) is birth year rather than sample year (as defined
above). This difference does not matter as long as the sam-
ple ages for the test and reference data sets are the same (as
they are for their main data set in their fig. 1).

There are several ways in which we believe our approach
is better than that of Kastelle et al. (2008). First, and most
importantly, our approach provides a confidence interval for
bias and thus a formal method of testing the null hypothesis
of zero ageing bias. Second, because the effect of ageing
bias is to displace the plotted test data from the reference
line in a horizontal direction, it seems more logical to devise
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a statistic that measures horizontal displacement (as h does)
rather than vertical displacement (as is measured by SSR).
Third, our approach makes use of information about impre-
cision in the test and reference data sets (i.e., the SEs for
age and D14C). Fourth, we avoided the subjective decision
involved in specifying parameters controlling the degree of
smoothing to be applied in fitting a line to the reference
data. The LOESS function used by Kastelle et al. (2008) re-
quires two such parameters (span and degree); it is unclear
to what extent their results are sensitive to these parameters.

Final comments and recommendations
We can understand that some researchers may be cautious

about using our proposed method because of its rather com-
plex calculations, which may be based on relatively few
data. We recommend exploratory plots as a means of con-
firming that the best estimate of bias, as well as the associ-
ated confidence interval, are plausible.

We offer some recommendations to researchers wishing
to apply our method. First, if possible, use formal estimates
of ageing error SEs based on replicate ages (see Appendix
B) rather than informal estimates, such as were used in three
of our four data sets. The more realistic these SEs are, the
more reliable the validation will be. Second, if there is any
doubt about the range of years to use when restricting the
data to the period of rapidly increasing D14C, then the vali-
dation should be repeated with different ranges of years to
see how sensitive the results are to this decision. Campana
et al. (2008, p. 736) provided an objective way of defining
the first year in the period of rapid D14C increase: this is
their YT, which is the year in which D14C first exceeds the
value CT, which lies at 10% of the way between CL and CP,
the lowest and peak values of D14C. It is simple to extend
this concept to define the last year in the period of rapid
D14C increase as being that at which D14C first exceeds the
level 90% of the way between CL and CP.

We are not able to specify recommended, or minimum ac-
ceptable, sample sizes for bomb radiocarbon validation data
sets. The location of the data points and the size of measure-
ment errors are probably just as important as their number.
Of course, with our method, data points outside the period
in which D14C is rapidly increasing make no contribution to
the validation. Even within this period, location is likely to
be important: the bias confidence interval for haddock would
probably have been narrower had the test data points been
spread across the whole period of rising 14C, rather than
being mostly at the end of that period. Another point to note
is that what is acceptable from a validation depends on the
current state of knowledge. For example, although it is rather
wide, the bias confidence interval for bluenose was useful
because it substantially reduced uncertainty about the longev-
ity of this species, whose otoliths are very difficult to read.

We caution against the practice of limiting the test data in
a validation set to the ‘‘best’’ otoliths, as was done by Kas-
telle et al. (2008). They limited their data in two ways: (i)
by using only otoliths with ‘‘clearer’’ annuli (i.e., those with
good agreement between two independent readings), and (ii)
by ignoring 11% (4/35) of the remaining test data points,
which they deemed to be ‘‘noteworthy outliers’’ (all of which
were well to the right of the reference line, by amounts sug-
gesting that they were underaged by about 20%). The pur-

pose of most age validations is to provide some confidence
that age data used in stock assessments will not be substan-
tially biased. For this purpose, a validation using only the
‘‘best’’ otoliths will be misleading unless the otoliths used in
stock assessments can be similarly limited.

It is hoped that this paper will stimulate other researchers
to propose methods to formalise age validations based on
other types of data (e.g., radiometric or marginal increment).
Though our approach for bomb radiocarbon validations is
not without weaknesses (as discussed above), it seems
greatly preferable to the informal and subjective methods
that are the norm in this area.
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Appendix A. Generation of the bluenose data
This appendix describes the procedures followed in gener-

ating the bluenose data of Table 1. Archived otolith pairs of
12 bluenose obtained from commercial trawl or line-fishing
catches off the central eastern coast of the North Island,
New Zealand, were selected for examination. The fish had
dates of capture from 1980 to 1999, and preliminary age es-
timations from transverse sections indicated that their likely
birth dates covered the period before, during, and after the
increase of surface oceanic radiocarbon.

One of each pair of otoliths was sectioned transversely
through the nucleus to produce a section ~0.35 mm thick
that was mounted on a glass slide. Using a binocular micro-
scope at �80 magnification with illumination by transmitted
light, all dark zones visible on either side of the sulcus were
counted. This is likely to be very similar to the Australian
procedure for ageing the same species (Morison and Robert-
son 1995).

To obtain an estimated age for the otolith core sample,
electronic images were made for each otolith of the thin sec-
tion on which the growth zones had been counted, and of
the thicker sections (from the paired otolith) from which the
carbonate samples were to be taken for stable isotope and
radiocarbon analyses. On a print of the thin section, the
growth zone positions were marked and labelled in associa-
tion with careful re-examination of the otolith section under
the microscope. On the print of the thick section, the growth
zones were similarly marked, and these marked zones were
used to position the drill tracks for carbonate samples. These
images were used to determine the single growth zone esti-
mated to be in the centre of the sample.
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Appendix B. The precision of snapper age
estimates

The bomb radiocarbon reference set developed by Kalish
(1993) and based on New Zealand snapper (Pagrus auratus)
otoliths does not include any estimate of the precision of the
snapper ages. For the present study, this precision was
estimated from an analysis of between-reader differences in a
separate sample of snapper from an area as close as possible

to that from which the sample of Kalish (1993) came (‘‘the
east coast of the North Island, New Zealand, between East
Cape and Hawke Bay’’). This comprised 1828 otoliths that
were collected off the eastern coast of the North Island
between the southern Bay of Plenty and Wellington (observer
area CEE), with each otolith having been aged separately by
two readers. Two alternative ageing-error models were fitted,
by maximum likelihood, to this data set, with ageing error
assumed to be normally distributed and either the standard er-
ror (SE), or the coefficient of variation (CV) of this error,
being a linear function of age. The former model was found
to fit the data better, based on AIC (Akaike 1974), and this
model estimated the SE of an age estimate, a, to be 0.349 +
0.0168a.
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Appendix C. Calculating a 95% confidence
interval for ageing bias

In this appendix, we present the full details of our pro-
posed procedure for calculating a 95% confidence interval
for ageing bias (a set of R functions to do these calculations
is available from the first author). Six variables are defined
for each datum in the test and reference data sets, and these
are the first six variables in Table C1 (which correspond to
the first six columns of Table 1). We show in step 1 below
how the seventh variable, sample year (Y), is calculated
from three of these first six variables (y, A, a). The pair of
variables (Y, C) may be thought of as defining a point, or a
set of points, on a plot like those in Fig. 3. When we want
to describe a single point, we will add a subscript, so that
(Yi, Ci) stands for the ith point in the set of points (Y, C).
Table C1 describes the various superscripts that are used to
define what type of point, or points, are being referred to.
For example, (Y r, C r) is the set of reference points; (Y rl,
C rl) is the reference line fitted to this set of points; (Y St,
C St) is a set of simulated test points, and so on.

For the following calculations, both the reference and test
data sets must be restricted to the period in which D14C is
rising rapidly (see main text). The calculation of the confi-
dence interval uses the following six steps.

1. Calculate sample years for reference and test data: Y r =
yr – (Ar – ar) and Y t = yt – (At – at) (this is the same as
the calculation described in footnote c to Table 1)

2. Make the reference line, (Y rl, C rl), by fitting a line to the
reference data, (Y r, C r), using algorithm A (described be-
low)

3. Find the relationship between assumed bias, b, and the
statistic h:

3.1 Select a trial value, b, of assumed percentage ageing
bias;

3.2 Calculate the sample year corrected for this bias
Y ct = yt – (Act – at), where Act = round[At/(1 + b/
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100)] is the bias-corrected age, which is rounded to
the nearest year (as the observed ages are whole
numbers);

3.3 Calculate the statistic h, which measures the extent to
which the corrected test points, (Y ct, C t), are horizon-
tally displaced from the reference line, (Y rl, C rl), in
terms of the errors, stA, using algorithm B (described
below);

3.4 Repeat steps 3.1–3.3 for a range of trial values of b,
tabulating the relationship between b and h in a table
like Table 3

4. Define the ‘‘true’’ values for use in the simulation experi-
ment:

4.1 Define the ‘‘true’’ reference line to be the same as
the reference line fitted at step 2, i.e., define (Y Trl,
C Trl) = (Y rl, C rl);

4.2 Define the ‘‘true’’ reference points, (Y Tr, C Tr), as
being the points on the ‘‘true’’ reference line, (Y Trl,
C Trl), that are closest to the actual reference points,
(Y r, C r), in terms of the errors, ðsrA; srCÞ using algo-
rithm C (described below)1;

4.3 Use the same procedure to define the ‘‘true’’ test
points, (Y Tt, C Tt), using the ‘‘true’’ reference line,
(Y Trl, C Trl), the actual test points, (Y t, C t), and the
standard errors, ðstA; stCÞ;

4.4 Calculate the ‘‘true’’ ages associated with the ‘‘true’’
reference and test data ATr = yTr – Y Tr + aTr and
ATt = yTt – Y Tt + aTt

5. Do simulations to calculate (hlo, hhi), a 95% confidence
interval for h under the assumption that there is no
ageing bias:

5.1 Generate simulated reference data, (Y Sr, C Sr), by
adding zero-mean normal errors with SDs ðsrA; srCÞ
to the ‘‘true’’ reference data, (Y Tr, C Tr):

CSr ¼ CTr þ srCZC
ASr ¼ roundðATr þ srAZAÞ

YSr ¼ yr � ðASr � arÞ

where ZC and ZA are generated as a standard normal
random variables;

5.2 Use the same procedure to generate simulated test
data (Y St, C St) from ðstA; stCÞ and (Y Tt, C Tt);

5.3 Calculate a simulated reference line (Y Srl, C Srl) from
(Y Sr, C Sr) using algorithm A;

5.4 Calculate h, measuring the displacement of the test
points (Y St, C St) from the line (Y Srl, C Srl) using the
errors stA and algorithm B;

5.5 Repeat steps 5.1–5.4 5000 times to generate 5000 h
values;

5.6 Define (hlo, hhi) as the 0.025 and 0.975 quantiles of
the 5000 h values

6. Calculate (blo, bhi), the 95% confidence interval for age-
ing bias, by interpolation using (hlo, hhi) and the relation-
ship tabulated at step 3.4.

Algorithm A involves fitting a line to a set of reference
points, (Y r, C r). First, if there are any groups of points with
the same sample year Y, each group is replaced by a single
point by averaging the C values within the group. Then the
R function ‘‘isoreg’’ (http://www.r-project.org/) is used to fit
a monotone increasing line to the resulting set of points.
This line is defined as a set of line segments joining a series
of (Y, C) points (i.e., a continuous linear spline) in which
both the Y and C values are in increasing order.

Algorithm B calculates the statistic h, which quantifies
the extent to which a set of test points, (Y t, C t), with ageing
error SEs, stA, is shifted to the left (negative h) or right (pos-
itive h) of a reference line (Y rl, C rl). First define, for the ith
test point, ðY t

i ; C
t
iÞ, the quantity hi ¼ ðY t

i � Y rl
i Þ=stA;i, where

Y rl
i is the point on the reference line that has C = Ct

i (Y rl
i is

calculated by interpolation on the continuous linear spline
described in algorithm A). h is defined as the median of the
hi. Note that Y rl

i will not be defined for any test point for
which Ct

i happens to lie outside the range of the C rl, so
such a point is ignored in calculating h.

Algorithm C finds the point (Y, C) on a reference line,
(Y rl, C rl), that is closest to a point (Yi, Ci) in terms of the
standard errors (sA, sC). Define the distance between (Yi, Ci)

and (Y, C) as d ¼ Y�Yi
sA;i

� �2

þ C�Ci
sC;i

� �2
� �0:5

. It is straightfor-

ward to find the point within each of the line segments mak-
ing up the reference line that is closest to (Yi, Ci). Then
search among these points to find the one closest to (Yi, Ci).

Table C1. Notation used in describing the calculation of a 95%
confidence interval for ageing bias.

Variables Superscripts

Quantity Symbol Type Symbol
Catch year y Reference r
Fish age A Test t
SE of fish age sA Line l
Sample age a True T
D14C C Simulated S
SE of D14C sC Corrected for bias c
Sample year Y
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