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Abstract
We present the growth cessation model, which is designed for species, such as some tropical tunas, that have an apparent 
linear relationship between length and age, followed by a marked reduction of growth after the onset of sexual maturity. 
The growth curve simply assumes linear growth for the youngest individuals and then uses a logistic function to model how 
the growth rate falls to zero at greater ages. One characteristic of the model is that, as t → 0, the model converges to a linear 
regression. The range of ages for which a linear regression adequately represents the mean length at age depends on when 
the logistic function becomes influential. A beneficial characteristic of this model is that, unlike other growth models, a pre-
ponderance of younger fish may not overwhelm the information from older fish, which biases the estimates of mean length at 
age for older fish. We apply the growth curve to bigeye tuna (Thunnus obesus) data from the eastern Pacific Ocean, obtained 
from otolith daily increment counts and tagging experiments, and compare the results with those from the von Bertalanffy 
and Richards growth curves. The growth cessation model fits the eastern Pacific Ocean bigeye tuna data better than do the 
von Bertalanffy and Richards growth curves. These results support the use of the growth cessation model for bigeye tuna in 
the eastern Pacific Ocean, and since many species have growth curves that flatten out to the point where growth is almost 
undetectable, this indicates that the growth cessation model may be widely applicable.

Introduction

Individual growth is a fundamental process used in describ-
ing the dynamics of populations, and is important in the 
development of management advice for population manage-
ment (Francis 2016; Maunder et al. 2016; Punt et al. 2016). 
For example, maximum sustainable yield in fisheries man-
agement is a trade-off between increases due to recruitment 

and growth and losses due to fishing and natural mortality. 
In some applications, the average growth rate of the indi-
viduals of the most abundant ages in the catch is adequate. 
However, in other cases a more accurate representation of 
growth and how it changes with age is needed. For example, 
when fisheries’ stock assessment models are fitted to length-
composition data, the modeled mean size of the oldest indi-
viduals can have a large influence on estimates of absolute 
abundance (Maunder and Piner 2015; Zhu et al. 2016). This 
is important for many tropical tuna stocks because aging 
individuals is difficult and time-consuming, and many stock 
assessments are fitted to length-composition data (Kolody 
et al. 2016; e.g., Fournier et al. 1998; Maunder and Watters 
2003).

Some tropical tuna stocks appear to have growth charac-
terized by a linear relationship between length and age fol-
lowed by a near cessation in growth (e.g., Aires-da-Silva et al. 
2015; Kolody et al. 2016), ignoring growth for early ages. This 
relationship is difficult to represent with the growth curves 
typically used in fisheries’ stock assessment. For example, 
in the von Bertalanffy growth curve mean length continues 
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to increase for older individuals. Even the Richards growth 
curve (Richards 1959), which is more flexible because it has 
an additional parameter, tends to overestimate the average 
lengths of the oldest individuals because it cannot bend over 
quickly enough without distorting the growth of young fish 
predicted by the growth curve (e.g., Aires-da-Silva et al. 2015). 
As mentioned above, the modeled mean length of the old-
est individuals can have a substantial influence on estimates 
of absolute biomass when stock assessment models are fitted 
to length-composition data, which is typical for tropical tuna 
stock assessments. Therefore, it is important to adequately 
represent growth in stock assessments of tropical tunas, so an 
alternative growth curve is needed.

Here we present the growth cessation model, which is 
designed for species, such as tropical tunas, which have a lin-
ear relationship between length and age followed by a near 
cessation in growth, typically after the onset of sexual matu-
rity. The growth curve is only an approximation, because it is 
based on cessation in growth and virtually all fish species are 
characterized by indeterminate growth (Sebens 1987). How-
ever, many species (e.g., some long-lived fish) have growth 
curves that flatten out to the point where growth is almost 
undetectable, indicating that the growth cessation model may 
be widely applicable. It is essentially the same as the logistic 
hockey stick stock-recruitment curve of Barrowman and Myers 
(2000). We apply it to data for bigeye tuna (Thunnus obesus) in 
the eastern Pacific Ocean, and compare the results with those 
obtained using von Bertalanffy and Richards growth curves.

Materials and methods

Growth cessation model

The four-parameter growth cessation model simply assumes 
linear growth for the youngest individuals and then uses a 
logistic function to model how the growth rate falls to zero at 
greater ages. Since growth at very young ages is often different 
from growth at older ages, it is prudent to have a parameter to 
simply adjust the mean length at age zero using a parameter 
(L0) rather than further complicate the model.

The solution to the integral equation is

where t is age, L0 is the length at age 0, rmax is a parameter 
relating to the maximum growth rate, k ≥ 0 is the steepness 
of the logistic function that models the reduction in the 
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growth increment and t50 is the age of the logistic functions 
midpoint.

The constant of integration is subsumed within L0.
One characteristic of the model is that, as t → 0, the 

model converges on a linear regression with slope rmax and 
intercept L0. The range of ages for which a linear regression 
adequately represents the mean length at age will depend on 
when the curve bends over (related to t50) and how rapidly 
it bends over (k). A beneficial characteristic of this model 
is that, unlike other growth models, a preponderance of 
younger fish may not overwhelm the information from older 
fish, which biases the estimates of mean length at age for 
older fish. In addition, information from young fish can be 
used to estimate rmax and L0, using a linear regression, while 
the other parameters can be estimated by fixing rmax and L0 
when fitting to data for older fish.

Parameter estimation

The contemporary approach to estimate growth curves is to 
use as much available information as possible to improve 
the estimates, particularly if different data sets provide 
information on different ages (e.g., Eveson et al. 2004). For 
example, this involves fitting the growth model simultane-
ously to age–length data from otoliths and length-increment 
data from tagging (Laslett et al. 2002; Eveson et al. 2004; 
Aires-da-Silva et al. 2015; Francis et al. 2016). Here we 
use a method similar to that of Aires-da-Silva et al. (2015). 
However, rather than treating age as a random effect, we 
simply estimate the age of each tagged individual as a sepa-
rate parameter. The reason for this is threefold: (1) to avoid 
complications and convergence issues with the implementa-
tion of random effects in this illustration; (2) to avoid having 
to assume a distribution for the ages, which is unknown; 
and (3) all the tag release lengths were within the range of 
the otolith age–length data, so the age at release should be 
well estimated. The model is fitted to the observed lengths 
using a normal distribution-based likelihood function with 
a constant coefficient of variation for both the age–length 
data and the tagging data. The von Bertalanffy and Richards 
growth curves are also fitted to the data for comparative 
purposes. To evaluate whether the Richards growth curve 
can adequately represent the near cessation in growth, the 
Richards growth curve is also fitted under three additional 
scenarios:

1.	 Richards up-weight tag recaptures ≥ 180 cm: the likeli-
hood function for the tagged fish recaptured at 180 cm 
or greater multiplied by 100. This puts more emphasis 
on the large fish and the model will fit those data better;

2.	 Richards down-weight age–length data (0.01): the age–
length likelihood down-weighted by a factor of 0.01. 
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This puts less emphasis on the small fish and the model 
will fit the data for the large fish better;

3.	 Richards down-weight age–length data (0.1): the age–
length likelihood down-weighted by a factor of 0.1. This 
puts less emphasis on the small fish, but not as little as 
scenario 2, and the model will fit the data for the large 
fish better.

Data

The growth curve is illustrated using data from bigeye tuna 
in the eastern Pacific Ocean similar to those used by Aires-
da-Silva et al. (2015). The age-at-length data are from direct 
readings of otolith daily increments, which cover mostly 
young bigeye up to 4 years of age (< 150 cm). Length-
increment data from tagging experiments are also dominated 
by young bigeye less than 150 cm, but some observations 
from larger bigeye are also available. A detailed descrip-
tion of these data sources is found in Schaefer and Fuller 
(2006). The tag–recapture data were updated with additional 
tag–recapture observations collected in recent years.

Results

The growth cessation model (see Table 1 for parameter esti-
mates) fits well to both the otolith age–length data and the 
growth-increment data from tagging for bigeye tuna in the 
eastern Pacific Ocean (Fig. 1). It has a lower negative log-
likelihood and, therefore, fits the data better than the von 
Bertalanffy and Richards growth curves (Table 2) by 100.6 
and 15.6 loglikelihood units, respectively, which is a better 
fit under all standard statistical tests (for reference, a reduc-
tion of approximately two negative loglikelihood units for 
the addition of a single parameter is significant at the 95% 
level under a two-sided Chi-squared test). Neither the von 
Bertalanffy nor the Richards growth curve is able to bend 

over quickly enough, and they both overestimate the average 
recapture length of the oldest individuals in the tagging data 
(model predicted mean length larger than observed mean 
length), which can be seen as negative residuals in Fig. 2.

The growth cessation model has the lowest negative log-
likelihood for the tagging data and, therefore, fits these data 
best. The von Bertalanffy model has the lowest negative log-
likelihood for the age–length data and, therefore, fits these 
data best. The growth cessation model has lower negative 
loglikelihoods for both the age–length data and the tagging 
data compared to the Richards model and, therefore, fits 
these data better than the Richards model. Arbitrarily put-
ting more weight on the tagging data with recaptures greater 
or equal to 180 cm so that the model fits these data bet-
ter, or down-weighting the age–length data so it fits these 
data worse, allows the Richards growth curve to bend over 
(Figs. 3, 4) and fit the tagging data better, but at the expense 
of a worse fit to the age–length data (Table 1), resulting in a 
strong residual pattern (Fig. 5).

Discussion

It is important to use the best possible growth estimates in 
fisheries stock assessments, particularly if the stock assess-
ment is fitted to length-composition data. The expected size 
of the oldest individuals relative to the largest fish observed 
in the data influences the estimates of the exploitation rates 
and absolute abundance levels (Maunder and Piner 2015). 
The model must increase fishing mortality to avoid allowing 
fish to live longer and grow larger than the fish observed in 
the data. This is particularly problematic for tropical tuna 
stock assessments that rely heavily on length-composition 
data. The growth cessation model fits the eastern Pacific 
Ocean bigeye tuna data better than do the von Bertalanffy 
and Richards growth curves. The estimates of mean length 
at age for older fish are controlled by data on younger fish 
for the von Bertalanffy and Richards growth curves. One 
way of thinking about this is that the von Bertalanffy and 
Richards growth curves are essentially predicting outside the 
range of the data due to the strong influence of the young fish 
on the predicted mean length of the old fish. These results 
support the use of the growth cessation model over the cur-
rently used Richards growth curve for the assessment of 
bigeye tuna in the eastern Pacific Ocean. If the Richards 
curve is used, then the model estimated by putting more 
weight on the tagging data with recaptures greater or equal 
to 180 cm appears to most closely resemble the growth ces-
sation model, particularly for the oldest individuals (Fig. 3).

Virtually all fish species are characterized by indetermi-
nate growth, whereby growth persists throughout the entire 
lifetime without the genetically imposed, predetermined lim-
its characteristic of mammals (Sebens 1987). Growth rate 

Table 1   Parameter estimates 
and standard errors for the 
growth cessation model fitted 
to data for bigeye tuna in the 
eastern Pacific Ocean

sd is the standard deviation used 
in the lognormal distribution-
based likelihood function used 
to fit the tag and otolith data 
and represents a combination of 
variation of length at age, meas-
urement error, and model mis-
specification

Estimate SE

L0 18.85 0.42
rmax 37.24 0.79
K 0.89 0.08
t50 4.57 0.09
sd 0.038 0.001
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reductions become increasingly evident after the onset of 
sexual maturity (Heino and Kaitala 1999), due to both the 
energetic (physiological) costs of reproduction and limita-
tions in food availability. In many species, the combination 
of cumulative mortality rate and variability in food supply 
results in an average growth trajectory of individuals in the 
population that never appears to completely flatten. In many 
long-lived fish species, however, growth curves that flatten 
out to the point where growth is almost undetectable are 
common, due to the increased energetic costs of a larger 
body size in a habitat with a limited or stable food supply 
(Karkach 2006). This is particularly evident in long-lived 
deep-sea fishes such as the tropical deep-water snapper, 
Pristipomoides filamentosus (Andrews et al. 2012), and 
deep-water rockfish, Sebastes spp. (Campana et al. 2016), 
but has also been observed in long-lived species in other 
habitats (e.g., banded morwong (Cheilodactylus spectabi-
lis), Ewing et al. 2007), elasmobranchs (porbeagle sharks 

(Lamna nasus), Francis et al (2007); white sharks (Car-
charodon carcharias), Natanson and Skomal (2015)), mol-
lusks (geoduck (Panopea abbreviata), Morsán and Ciocco 
2004), and marine reptiles (loggerhead sea turtles (Caretta 
caretta), Parham and Zug 1997). Therefore, the growth-
cessation model may be applicable to a wide range of spe-
cies and stocks. However, sampling bias that selects against 
large fish (e.g., a dome-shape length-specific gear selectiv-
ity) may cause the appearance of growth cessation and needs 
to be taken into consideration. The different implications on 
management advice of dome-shape selectivity versus lower 
asymptotic length may be substantial.

The growth-cessation model can be viewed as a simpli-
fication of Minte-Vera et al.’s (2016) cost of reproduction 
(COR) model. In the COR model, the parameters of the 
logistic function are those that represent the maturity sched-
ule. The COR model has two additional parameters, one 
of which describes the loss in energy due to reproduction 
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Fig. 1   Fit of the growth-cessation model (left panels) to the otolith 
age–length data (top), tagging length at release (middle), and tag-
ging length at recapture (bottom) for bigeye tuna in the eastern Pacific 

Ocean compared to the von Bertalanffy (middle panels) and Richards 
(right panels) models
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Table 2   Likelihood values and derived quantities from the fit of the models to the data

The likelihoods presented for the Richards model scenarios with different data weightings are based on the likelihood without weighting 
included. Richards up-weight tag recaptures ≥ 180 cm: the likelihood function for the tagged fish recaptured at 180 cm or greater multiplied by 
100. Richards down-weight age–length data (0.01): the age–length likelihood down-weighted by a factor of 0.01. Richards down-weight age–
length data (0.1): the age–length likelihood down-weighted by a factor of 0.1

Growth cessation Von Bertalanffy Richards Richards up-weight 
tag recaptures 
≥ 180 cm

Richards down-weight 
age–length data (0.01)

Richards down-weight 
age–length data (0.1)

Number of parameters 466 465 466 466 466 466
Negative loglikelihood
 Age 617.8 610.6 620.1 828.2 1399.8 969.7
 Tag 1356.2 1464.0 1369.5 1309.8 1240.7 1260.2
 Total 1974.1 2074.6 1989.7 2138.0 2640.5 2229.8

Difference in negative loglikelihood from the minimum
 Age 7.2 0.0 9.5 217.6 789.2 359.0
 Tag 115.5 223.3 128.8 69.0 0.0 19.4
 Total 0.0 100.6 15.6 163.9 666.4 255.8

Length at age 10 189.4 214.6 195.8 191.0 188.6 190.9
sd at age 10 7.3 9.0 7.6 5.8 5.2 5.7
75th percentile 194.3 220.7 201.0 194.9 192.1 194.7
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Fig. 2   Residuals of the fit of the growth-cessation model (left panels) 
to the otolith age–length data (top), tagging length at release (mid-
dle), and tagging length at recapture (bottom) for bigeye tuna in the 

eastern Pacific Ocean compared to the von Bertalanffy (middle pan-
els) and Richards (right panels) models
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and, therefore, individuals can continue growing after they 
reach maturity. It is not clear if the near cessation or slowing 
of growth is related to maturity in tropical tunas, which is 
represented by the logistic function in the COR model, and 
estimating the parameters of the logistic function might be 
desirable. Therefore, the additional parameters of the COR 
model, and the fact that the formula for growth uses an itera-
tive procedure over age, make estimation problematic com-
pared to the fewer parameters of the growth-cessation model. 
The parameters t50 and k of the growth-cessation model 
could be fixed based on the maturity ogive, as suggested by 
Minte-Vera et al. (2016) for the cost of reproduction (COR) 
model. Laslett et al. (2002) proposed the von Bertalanffy 
growth curve with logistic growth rate as a special case of 
Wang’s (1998) generalization of the von Bertalanffy growth 
curve to model the apparent two-stage growth of southern 
bluefin tuna. However, their model has more parameters, 
and may be less able to model the linear growth for young 

individuals. Lopez et al. (2000) showed that the general-
ized Michaelis–Menten equation, with its variable inflection 
point, was able to adequately describe sigmoidal growth in 
a wide variety of animals.

Despite the growth-cessation model being composed 
of two completely different growth patterns (linear growth 
and cessation in growth), the logistic transition from linear 
growth to cessation in growth allows for the smooth curva-
ture in length-at-age similar to the von Bertalanffy growth 
curve. An additional parameter could be added to Eq. 1 to 
allow growth to continue at a low rate for old fish, but esti-
mation of this additional parameter is likely to be problem-
atic, and the growth curve would not continue to bend over 
towards an asymptote like other commonly used growth 
curves (see Minte-Vera et al. (2016) for a review of other 
two-stage growth models). The few data that are available 
for eastern Pacific Ocean bigeye tuna indicate that growth 
effectively stops, or nearly stops, at old ages, supporting 
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Fig. 3   Fit of the Richards growth model to the otolith age–length data 
(top), tagging length at release (middle), and tagging length at recap-
ture (bottom) for bigeye tuna in the eastern Pacific Ocean for different 
weightings of the data: (1) up-weight tag recaptures ≥ 180 cm by 100: 
the likelihood function for the tagged fish recaptured at 180  cm or 
greater multiplied by 100. This puts more emphasis on the large fish 
and the model will fit those data better (left panels), (2) down-weight 

age–length data by 0.01: the age–length likelihood down-weighted 
by a factor of 0.01. This puts less emphasis on the small fish and the 
model will fit the data for the large fish better (middle panels), (3) 
down-weight age–length data by 0.1: the age–length likelihood down-
weighted by a factor of 0.1. This puts less emphasis on the small fish, 
but not as little as scenario 2, and the model will fit the data for the 
large fish better (right panels)
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Fig. 4   Growth-cessation model 
compared to the Richards 
growth model for different 
weightings of the data: (1) 
up-weighting tag recaptures 
≥ 180 cm by 100 (Richards 
180 cm–100), 2) down-weight-
ing age–length data by 0.01 
(Richards AL–0.01), (3) down-
weighting age–length data by 
0.1 (Richards AL–0.1)
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Fig. 5   Residuals of the fit of the Richards growth model to the oto-
lith age–length data (top), tagging length at release (middle), and 
tagging length at recapture (bottom) for bigeye tuna in the eastern 
Pacific Ocean for different weightings of the data: (1) up-weight tag 
recaptures ≥ 180  cm by 100: the likelihood function for the tagged 
fish recaptured at 180  cm or greater multiplied by 100. This puts 
more emphasis on the large fish and the model will fit those data bet-

ter (left panels), (2) down-weight age–length data by 0.01: the age–
length likelihood down-weighted by a factor of 0.01. This puts less 
emphasis on the small fish and the model will fit the data for the large 
fish better (middle panels), (3) down-weight age–length data by 0.1: 
the age–length likelihood down-weighted by a factor of 0.1. This puts 
less emphasis on the small fish, but not as little as scenario 2, and the 
model will fit the data for the large fish better (right panels)
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the use of the growth-cessation model, but more data are 
needed to confirm the appropriateness of the model. Other 
tuna stocks show similar linear growth followed by near ces-
sation (Kolody et al. 2016; e.g., yellowfin tuna, Dortel et al. 
2015; bigeye tuna, Farley et al. 2006; bluefin tuna, Gunn 
et al. 2008; Restrepo et al. 2010), suggesting general appli-
cability of the model.
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