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century‑long cod otolith 
biochronology reveals individual 
growth plasticity in response 
to temperature
Szymon Smoliński1*, Julie Deplanque‑Lasserre2, einar Hjörleifsson3, Audrey J. Geffen1,4, 
Jane A. Godiksen1 & Steven e. campana2

Otolith biochronologies combine growth records from individual fish to produce long-term growth 
sequences, which can help to disentangle individual from population‑level responses to environmental 
variability. this study assessed individual thermal plasticity of Atlantic cod (Gadus morhua) growth 
in Icelandic waters based on measurements of otolith increments. We applied linear mixed-effects 
models and developed a century-long growth biochronology (1908–2014). We demonstrated 
interannual and cohort-specific changes in the growth of Icelandic cod over the last century which 
were mainly driven by temperature variation. temperature had contrasting relationships with 
growth—positive for the fish during the youngest ages and negative during the oldest ages. We 
decomposed the effects of temperature on growth observed at the population level into within-
individual effects and among‐individual effects and detected significant individual variation in the 
thermal plasticity of growth. Variance in the individual plasticity differed across cohorts and may 
be related to the mean environmental conditions experienced by the group. our results underscore 
the complexity of the relationships between climatic conditions and the growth of fish at both the 
population and individual level, and highlight the need to distinguish between average population 
responses and growth plasticity of the individuals for accurate growth predictions.

Increasing ocean temperature is considered one of the most important climatic factors that influence biologi-
cal processes in marine systems, including the dynamics of fish  stocks1. Many retrospective studies on natural 
populations have shown a relationship between temperature and individual parameters of fish, such as body 
growth and body  size2. These fundamental biological characteristics affect many ecological properties of the 
individuals often reflected in population metrics, e.g., size at maturation, fecundity, recruitment, or population 
 biomass3. In consequence, global warming has significant impacts on fish  productivity4. Predictions of future 
climatic impacts on fish populations require a thorough assessment of fish growth-temperature  relationships5.

Investigations of an individual organism’s responses to temperature change, in addition to the studies of the 
population-level responses, have become critical for our understanding of the global climate change  impacts6. 
Traditionally, in fishery science, the mean size of individuals from a given cohort at successive ages is com-
pared to obtain the mean population growth  rate7. Typically studies assess the correlation between these annual 
means for a given trait (e.g. mean population growth rate) with environmental  conditions8. But the observed 
population-level responses to the environmental change may be caused both by the individual responses and by 
between-individual effects associated with the differences in the average environmental conditions experienced 
by the  fish9 (Fig. 1a–c). Therefore, the nature of individual responses are difficult to infer from population-level 
 analyses10 which can smooth individual expressions of phenotypic traits (e.g., Fig. 1c). Without access to indi-
vidual growth records, the population-level analyses obscure how individuals track the changing  environment11.

Otolith biochronologies link growth records from individual fish to produce high-quality, long-term growth 
 sequences12. These long-term growth sequences can then be analyzed to disentangle individual effects from 
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population-level responses. Otoliths are calcified structures, part of the acoustic-lateralis system in fish, located 
in the inner ear. They are composed of calcium carbonate on a protein matrix and grow continuously throughout 
the life of the  fish13. Seasonal growth patterns, reflected in translucent and opaque zones, form annual growth 
increments, similar to tree-rings14. Otolith growth is proportional to somatic growth and annual growth incre-
ment widths can be measured as a proxy of individual growth to reconstruct individual growth  histories12. Otolith 
biochronologies can fill gaps or extend the information on fish growth before the periods in which historical 
measurements of fish body size-at-age are available. Finally, biochronologies benefit from the fact that otolith 
increments reflect the growth of individual fish over discrete time  intervals13,15, providing phenotypic measure-
ments that are not available from the traditional size-at-age data. These repeated measurements of phenotypic 
traits along an environmental gradient give unusual opportunities for separating individual phenotypic plasticity 
from population-level  effects16,17.

Phenotypic plasticity is a major mechanism of response to environmental variability, which may allow organ-
isms to cope with rapid shifts, including global climate  change18,19. Phenotypic plasticity can be expressed as the 
ability of a single genotype to express a modified phenotype under heterogeneous environmental  conditions6. 
Individual phenotypic plasticity is often conceptualized in the form of reaction norms, functions that relate 

Figure 1.  Schematic illustration of different levels of variability in individual thermal plasticity of growth. 
Colors indicate fish cohorts, colored lines show individual thermal reaction norms, grey dashed lines show 
among-individual effects, and black solid lines population-level growth response. Example scenarios of 
within-individual effects (individual plasticity) and among-individual effects of temperature are presented in 
columns (slopes of -1, 0, or 1 for within-individual and among-individual effects are indicated in the upper-left 
corners). (a–c) No significant variation in individual thermal plasticity of growth, (d)–(f) significant variation 
in individual plasticity, and (g)–(i) heterogeneous variance in individual plasticity among the cohorts. Arrows 
indicate the increasing variance of individual plasticity along the temperature gradient.
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individual phenotypes to an environmental  variable20. Estimations of individual reaction norms and persistent 
between‐individual effects due to environmental variability (Fig. 1a–c) are possible with the extension of mixed-
effects models applied to biochronological  data21,22. The slope of the individual’s reaction norm estimated with 
this statistical approach reflects the magnitude of change in a phenotypic trait across an environmental gradient 
and is used as a measure of individual phenotypic  plasticity10,23. Mixed-effects models can also be applied to test 
for the presence of variation in phenotypic plasticity between  individuals10 (Fig. 1d–f).

Changes in the variation of individual phenotypic plasticity over  time18 (Fig. 1g–i) constitute an additional 
level of biological diversity to be explored in ecological and evolutionary  studies8. High variation in individual 
growth plasticity can be considered as one of the elements of “biocomplexity”, which helps to maintain resilience 
to environmental  change24,25. The variation of individual phenotypic plasticity may be affected by the environ-
mental  conditions26 or in the case of commercially exploited fish stocks by fishing  pressure22. Systematic changes 
in the variation of individual plasticity are rarely documented in wild populations, even though it has important 
implications for our understanding of the environmental dependencies of growth under varying  conditions8.

In this study, our objective was to assess individual thermal plasticity of growth in commercially exploited 
fish species. We hypothesized that population-level responses are driven both by within-individual effects (indi-
vidual phenotypic plasticity) and among-individual effects (Fig. 1a–c; Hypothesis 1). We also hypothesized that 
individuals can differ in their thermal plasticity of growth (Fig. 1d–f; Hypothesis 2) and that variation of this 
individual-level growth plasticity can change between cohorts under natural environmental alterations and 
human-induced fishing pressures (Fig. 1g–i; Hypothesis 3). To test these hypotheses, we collected measurements 
of otolith increments from a large historical archive of Atlantic cod (Gadus morhua) otoliths from Icelandic waters 
(Fig. 2). We selected cod because of its key importance in many marine  ecosystems27 and wide distribution over 
the whole North  Atlantic28. The repeated measurements of growth in different environmental conditions for each 
year of individuals’ life allowed us to investigate individual growth plasticity. We applied linear mixed-effects 
models on 28,234 otolith increment measurements and developed a century-long biochronology (1908–2014). 
We controlled for the influence of different intrinsic and extrinsic factors affecting growth to accurately esti-
mate individual fish growth-temperature relationships. We quantified interannual variation and cohort-specific 
changes in the mean growth of the population and showed that temperature was the main environmental driver 
of growth. The unique biochronological information on individual fish growth histories over a long time period 
enabled us to explore individual thermal plasticity of growth and its between‐individual variation.

Results
Growth measurements. Measured otolith increment widths ranged between 45 and 869 μm with a sig-
nificant age-dependent negative effect (decrease in width as fish get older, Fig. 3a). There was also an interannual 
variation in the mean growth of fish within different age classes. We observed wider otolith increments during 
the period from 1940 to 1970 (Fig. 3b) for all the age classes.

intrinsic and extrinsic sources of growth variation. Growth varied significantly between individuals, 
years and cohorts (Table 1, Supplementary Table S1). A relatively high proportion of variance was associated 
with the random effect of FishID. The intraclass correlation coefficient of the FishID random intercept-only 
model was 13.4%. Both Year and Cohort random effects represented a similar level of variance in the model. The 
intraclass correlation coefficients calculated from intercept-only models were 4.1% for Year random effect and 
3.6% for Cohort random effect. The inclusion of Sex effect did not improve the intrinsic model fit (Supplemen-
tary Table S2).

Figure 2.  Atlantic cod (Gadus morhua) sampling locations (red dots). Three land-based locations reflect errors 
in the capture location data. Shaded polygons indicate areas (smaller—spawning area and larger—Icelandic 
shelf) over which sea surface temperature (SST) data were averaged. Isobaths of 400 m are indicated with 
solid lines. This map was generated using R version 3.5.165 based on the GSHHG shoreline  database67 and the 
ETOPO1 bathymetric  database68.
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The biochronology record showed considerable year-to-year variation and long-term growth trends (Fig. 4a). 
Growth was highest in the years 1947 and 1972. Years with especially poor growth were 1925, 1930, and 2014. 
Cohort-specific patterns of growth were also evident (Fig. 4b). The strongest growth was observed for the indi-
viduals from the 1943, 1949 and 1962 cohorts, while fish hatched in the years 1982–1984 were characterized by 
the lowest growth.

The thermal conditions during the spawning season significantly influenced mean fish growth, the extent of 
which varied with age and cohort. The systematic sliding-window analysis for temperature variables indicated 
that the mean April SST in the spawning area  (SSTspawn) in the interaction with Age was the best thermal pre-
dictor of cod growth (Supplementary Table S3; Fig. S1).  SSTspawn was a better predictor than  SSTshelf. Shifts in 
the  SSTspawn anomalies were synchronized with changes in both interannual and cohort-specific effects (Fig. 4).

Cod growth was also correlated with other environmental conditions, particularly stock abundance (N), 
in addition to  SSTspawn (Supplementary Table S4). The extrinsic model of cod growth (Table 1) incorporates 
 SSTspawn signal in the interaction with Age and N in interaction with Age, in addition to the intrinsic effect of Age 
(Fig. 5a). There was no significant effect of harvest rate (HR). The extrinsic model explained about two-thirds of 
growth variance (marginal  R2 = 0.57 and conditional  R2 = 0.66). Comparison of model estimates with the scaled 
and centered explanatory variables indicated that among the environmental variables  SSTspawn was the strong-
est predictor (Supplementary Table S5). Model predictions showed contrasting relationships of  SSTspawn and 
growth, depending on age. Fish growth in the 2nd–8th year of life was positively affected by temperature and in 
the 9th–10th year of life negatively affected by the temperature (Supplementary Table S6). Conversely, growth 
in the 2nd–5th year of life was negatively affected by N and growth in the 6th–10th year of life was positively 
affected by N (Fig. 5b, Supplementary Table S6).

Hypothesis 1 Thermal effects within and among-individuals.

We decomposed the effects of  SSTspawn on growth observed at the population level into within-individual 
effects,  SSTspawn-within, and among-individual effects  SSTspawn-among (Fig. 5c, d).  SSTspawn-within expresses the plastic 
responses of the individuals to interannual deviations of the environment from each individual’s lifetime average. 
 SSTspawn-among expresses the responses associated with the differences among individuals in the individual’s lifetime 
average. The level of variance explained by the  SSTspawn-within represented approximately half of the variance associ-
ated with the  SSTspawn-among, reflecting the importance of both effects. Model comparisons with AICc supported 
the inclusion of  SSTspawn-within in interaction with Age and  SSTspawn-among (Supplementary Table S7). Similar to the 
effects of the original  SSTspawn variable in the baseline extrinsic model, positive relationships between growth and 
 SSTspawn-within were observed for the fish in the 2nd–6th year of life and negative relationships in the 7th–10th year 
of life (Fig. 5c). There was no support for the inclusion of the interaction of  SSTspawn-among with Age term and so 
the model predicted a consistently positive effect across age groups (Fig. 5d; Table 2).

Figure 3.  Measured otolith increment width by age classes (a; lines, boxes, and whiskers are medians, 
interquartile range (IQR), and 1.5 IQR, respectively) and time series of mean (± standard error) otolith 
increment width for the selected age classes (b; values are presented only for instances with at least ten 
observations).
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Hypothesis 2 Variation in individual thermal reaction norms.

We recognized a significant variation in individual thermal reaction norms of cod (Table 1). Comparisons of 
the models with AICc indicated that inclusion of random slopes for the  SSTspawn-within significantly improved the 
model fit (Supplementary Table S8). Fish differ individually in the slope of their growth-SSTspawn-within relation-
ships (Supplementary Fig. S2). At age 2, the model predicts a positive slope of the growth-SSTspawn-within reaction 
norm for all fish. Individual thermal response in growth at age 2 within the observed range of  SSTspawn-within 
(from − 1.29 to 0.90 °C) predicted by the extended extrinsic model varied from 11.40 to 47.60%, while the aver-
age change predicted for the whole population was 27.22%. Predicted individual thermal response in growth 
at Age 10 varied from − 19.37 to 6.83%, while average change predicted for the whole population was − 7.92%.

Hypothesis 3 Heterogeneity in the variance of the individual plasticity.

We also observed heterogeneity among the cohorts in the variance of the individual plasticity (variance of 
random  SSTspawn-within slopes for FishID). Certain cohorts were characterized by more regular growth responses 
among individuals and homogenized individual plasticity than other cohorts. There was a negative correlation 
between cohort-specific variance of individual thermal plasticity and the mean  SSTspawn (ρ =  − 0.31, df = 86, 
P = 0.004), and mean N (ρ =  − 0.28, df = 86, P = 0.007) experienced by the cohort (Fig. 6). The variance of indi-
vidual thermal plasticity was positively correlated with the mean HR (ρ = 0.28, df = 86, P = 0.009).

Discussion
Fish growth is a biological response that integrates many elements – both intrinsic (e.g. ontogeny and sex) 
and extrinsic (e.g. abiotic conditions of the environment or intra-specific interactions), which may complicate 
inference about climatic  impacts9. After accounting for dominating intrinsic age effects, we demonstrated how 
Icelandic cod growth has varied over the last century. Our main goal was to assess individual plasticity of growth 
in response to temperature variability, but overlooking non-climate effects in the modeling of fish growth may 

Table 1.  Parameter estimates of the optimal intrinsic, extrinsic, and extended extrinsic model for Atlantic 
cod growth selected with AICc. Estimates are given for all fixed effects with confidence intervals (CI). For the 
random effects residual variance (σ2), the variance associated with tested effects (τ) and their correlations (ρ) 
are given. The number of observations used to fit the model is specified in the bottom row.

Predictors

Intrinsic Extrinsic Extrinsic extended

Estimates CI Estimates CI Estimates CI

(a) Fixed effects

Intercept 5.326 5.313 to 5.338 5.320 5.307 to 5.333 4.830 4.583 to 5.077

Age − 0.632 − 0.649 to − 0.615 − 0.646 − 0.666 to − 0.626 − 0.645 − 0.663 to − 0.627

N 0.000 − 0.008 to 0.008 − 0.002 − 0.010 to 0.006

Age:N 0.019 0.005 to 0.033 0.017 0.003 to 0.031

SSTspawn 0.033 0.009 to 0.058

Age:SSTspawn − 0.068 − 0.098 to − 0.038

SSTspawn-within 0.020 − 0.009 to 0.049

Age:SSTspawn-within − 0.092 − 0.126 to − 0.058

SSTspawn-among 0.069 0.035 to 0.103

(b) Random effects

σ2 0.056 0.056 0.056

τ00

0.007 FishID 0.007 FishID 0.007 FishID

0.002 Year 0.002 Year 0.002 Year

0.002 Cohort 0.001 Cohort 0.001 Cohort

τ11

0.013 Age|FishID 0.012 Age|FishID
0.012 Age|FishID

0.005 SSTspawn-within|FishID

0.002 Age|Year 0.001 Age|Year 0.001 Age|Year

0.003 Age|Cohort 0.006 Age|Cohort 0.004 Age|Cohort

ρ

0.399 FishID-Age 0.436 FishID-Age 0.440 FishID-Age

− 0.167 Year-Age − 0.050 Year-Age − 0.107 Year-Age

0.242 Cohort-Age 0.286 Cohort-Age 0.167 Cohort-Age

N

3728 FishID 3677 FishID 3677 FishID

107 Year 87 Year 87 Year

100 Cohort 89 Cohort 89 Cohort

Observations 28,234 26,436 26,436
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result in the mistaken assignment of growth changes to particular sources of variation and overestimation of 
temperature  effects29. Therefore, we controlled for potential confounding effects of fishing pressure and density-
dependence30. We selected these potential environmental predictors of the cod growth based on prior ecological 
 knowledge28,31–34, taking into consideration data reliability and availability. Some of the potentially important 
predictors were excluded because the time series of relevant proxies relating to oceanography or prey dynamics 
are short in comparison with our century-long analysis. For example, the incorporation of time series on abun-
dance of  capelin31, as well as euphausiids or shrimps, constituting important food resources for Icelandic  cod35,36, 
could provide a more complete picture of the environmental drivers of cod growth. The inclusion of large-scale 
climatic factors (e.g. indices of Atlantic Multidecadal Oscillation or North Atlantic Oscillation) in the analysis 
could also provide interesting insights on the response of cod growth to lower frequency changes in the environ-
mental  conditions37, but the incorporation of these indices in the modeling makes it more difficult to accurately 
estimate more direct effects of temperature on fish growth and thus to investigate individual thermal plasticity.

We found no significant effect of fishing pressure, but a negative influence of the high stock abundance for 
the growth of fish during their youngest ages and, in contrast, a positive influence during their oldest ages. 
Density-dependent effects on fish growth are recognized in many  populations38 and are often studied in Atlantic 
 cod32. Higher abundance often leads to enhanced intra-specific competition for limited resources (especially 
food), causing a decrease in  growth30. However, density-dependence and competition can impact young and 

Figure 4.  Best linear unbiased predictor (BLUP) of the year (a) and cohort (b) random effect on Atlantic cod 
growth and the anomaly of mean April sea surface temperature (SST) within the spawning area. The number of 
increments measured for each year or cohort is indicated with the size of the dots and standard error of BLUP 
with the shaded area or bars. Temperature anomaly is indicated with colored bars.

Table 2.  Effect of the selected environmental variables expressed as % change in growth. Effects are predicted 
for discrete age groups by optimal extended extrinsic model within the range of environmental conditions 
experienced by the Icelandic cod in the years 1928–2014.

Predictor (range)

Age

2 3 4 5 6 7 8 9 10

April SSTspawn-within

 (− 1.29 to 0.90 °C) 27.22 17.27 10.69 5.84 2.03  − 1.08  − 3.70  − 5.95  − 7.92

April SSTspawn-among

 (6.40 to 7.71 °C) 9.46 9.46 9.46 9.46 9.46 9.46 9.46 9.46 9.46

N

 (− 2.55 to 3.54)  − 10.57  − 6.85  − 4.11  − 1.94  − 0.13 1.43 2.80 4.03 5.14
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old fish  differently39. Young cod feed on a limited spectrum of available  prey36, occupy more constrained space 
in relatively shallow  waters40 and their feeding habitat is limited  vertically41. Moreover, the density of young cod 
is higher and fluctuates more markedly than in older  cod42. These biological properties may enhance the intra-
specific competition and negative density-dependent effects during the youngest ages. Our model predictions 
suggested that the effect of stock abundance was positive for fish during their oldest ages, in contrast to previous 
findings which showed slower growth at high abundances also for the older cod  individuals43. Positive relation-
ships between stock size and growth can be observed when stock is reduced to the level at which group dynamics 
and cooperative interactions are weakened, limiting spawning success, foraging, or avoidance of  predators44,45.

The most important extrinsic predictor of cod growth in our model was the mean SST in the spawning area. 
Because growth is the integration of a series of processes, such as feeding, assimilation, metabolism, transforma-
tion, and excretion, and their rates are all controlled by temperature, this environmental variable was previously 
considered as the significant controlling  factor46. We identified April as a critical time window of temperature 
for the prediction of Icelandic cod growth, which coincides with the spawning peak observed from March to 
 May47. We observed strong growth of cohorts hatched in the years characterized by warm April conditions, which 
suggested potential carryover effects associated with the thermal influences during the early life of  fish48. April 
SST in southwest Iceland may serve as a predictor of the biological productivity of the weakly stratified Atlantic 
 waters49,50. High biological production in spring can cause indirect and lagged (through food supply) effects 
on cod during the intensive feeding  periods36. Preliminary analysis revealed the highest correlations between 
monthly SST and temperature at depth in April. Therefore, April SST provides also a relatively good represen-
tation of the interannual variability of thermal conditions at depth, which more directly affects the growth of 
cod. Our model predictions revealed the strongest and positive temperature effects for the growth during the 

Figure 5.  Predicted effect of age (a); stock abundance (b); within-individual SST differences (c); among-
individual SST differences (d) on cod growth. Shaded areas depict 95% confidence intervals.
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youngest ages, which is in line with previous  findings33,51,52. Such age-dependent temperature effects are also in 
agreement with the general temperature–size rule, where temperature increase leads to faster juvenile growth 
of fish and smaller adult body  sizes2.

Our results showed that cod growth variation was associated with the persistent effects of cohorts, which 
can reflect differences in the systematic response to environmental  variability9. For example, individuals from 
a particular year class may experience good (or poor) environmental conditions during the juvenile phase and 
those positive (or negative) effects may be carried over during the life of fish and be manifested in future  growth48. 
Such cohort-specific variation in growth was previously found in Icelandic  cod31, suggesting persistent influences 
of extrinsic conditions, such as food availability modulated by intraspecific competition. Here, the importance of 
temperature conditions for the cohort mean growth was supported by the results of the within-group centering 
of the SST variable. Besides the clear within-individual age-dependent responses, permanent among-individual 
effects of water temperature were observed (Hypothesis 1). Thus, on average, fish that experienced warmer 
temperatures during their life grew more. Directional variation in growth was especially visible throughout the 
chronology in the synchrony of positive and negative phases of cod growth and SST anomalies. These patterns 
were prominent in both the interannual and cohort-specific changes. In general, there was a phase of significantly 
higher growth of fish in the warm years approximately 1930–1970s, followed by the colder period 1970s-present 
when cod growth was lower than average. The last decline in growth was probably caused by a combination of 
the deteriorating environmental conditions in Icelandic waters, including alterations of the temperature regime 
and a high stock  abundance43.

We detected significant variation in individual plasticity of the response to temperature, as seen in the varia-
tion in the slope of the thermal reaction norms between individuals (Hypothesis 2). We consider this variation 
to be meaningful biological information rather than ‘noise’23,53. For example, alternative foraging patterns (deep- 
or shallow-water migrations) in Icelandic  cod47 may contribute to the observed variation of individual thermal 
plasticity of growth. Variation in the plastic responses of the individuals to climatic variability has implications 
for the way we interpret trait–environment relationships in  organisms8. Such individual differences in phenotypic 
plasticity can arise from genetic  effects54,55, but also from early-life or current environmental  conditions19. When 
a heritable (genetic) component is present in the variation of the individual phenotypic plasticity, potentially it 
can evolve under directional  selection26. Quantifying the genetic basis of reaction norms properties is possible 
with the application of the mixed effect modelling framework extended to the so-called ‘animal model’ incorpo-
rating relatedness  estimates10,23. Additional studies involving the suitable measure of individual fish fitness (e.g. 
reproductive success) in order to assess the consequences of variation of plasticity and its adaptive, non-adaptive, 
or maladaptive nature would be  valuable6,10. There is still relatively scarce knowledge about how selection acts 
on plasticity in wild animal  populations53,56. Since potential evolutionary changes in the growth plasticity of 
fish can lead to alterations in the reaction norms under new environmental conditions, identification of such 
changes is of high importance for our predictions of the population responses to the changing global  climate18.

We highlighted that the variance of thermal plasticity was heterogeneous across fish from different cohorts 
(Hypothesis 3). Cohorts that experienced—on average—warmer conditions had less variable individual growth 
plasticity to the temperature changes than cohorts living in the colder periods. Within the range observed in this 
study, higher temperatures (10–15 °C) are closer to the optimum of the  species28,51,52. Therefore, one may expect 
that lower temperatures will result in more regular growth responses and homogenized individual plasticity due 
to the more pronounced thermal stress, but this was not the case. We observed also that variance of individual 
growth plasticity was lower at the higher stock abundance. The increase in abundance of stock corresponds to 

Figure 6.  The cohort-specific variance of individual random  SSTspawn-within slopes regressed with mean  SSTspawn 
(a), mean stock abundance index (b) and mean harvest rate (c) experienced by the cohort. Fitted lines are 
presented with 95% confidence intervals (shaded areas).
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the decline in environmental quality due to the increased  competition30,32. This in turn, likely reduces the pos-
sibilities of exploiting different strategies for the allocation of surplus energy between reproduction or somatic 
 growth57 and results in the homogenization of the individual plastic responses. Similar mechanisms may explain 
the positive relationship between harvest rate and cohort-specific variance of individual phenotypic plasticity. 
High harvest rate, through the release from density  dependence30 and improvement of fish physiological con-
ditions, may create capacity for the variation in individual phenotypic plasticity. However, harvesting can also 
diminish the expression of phenotypic diversity within populations as a direct effect of selection or the disrup-
tion of social  hierarchies22.

The between-individual variation in phenotypic plasticity underlying observed trait–environment relation-
ships are rarely considered due to the large, long-term datasets required for such  analysis8,16. Observational data 
collected for the wild populations only allow for a correlative approach, and other unmeasured variables may 
play a role in shaping variation in plastic  responses18. Therefore, the underlying ecological and physiological 
mechanisms of the heterogeneity in the variance of the individual plasticity observed among cod cohorts remain 
unclear. Nevertheless, we present unique results from a natural, managed population indicating that individual 
responses to temperature changes are notably variable, and it is likely that the variance of individual growth plas-
ticity may change among cohorts under different environmental conditions. Some cohorts may be constrained 
by the environmental conditions in expressing phenotypic  plasticity26,56. Thus, our ability to detect variance in 
the phenotypic plasticity at the individual level may depend on the environmental conditions experienced by the 
studied  cohort8. This evidence of between-individual variation in the thermal reaction norms is an important 
contribution to our understanding the complexity of plastic responses among organisms and the consequences 
for coping with current and future climate  change11,26.

Materials and methods
otolith sampling and measurements. We selected cod otoliths from the archival collection of the 
Marine and Freshwater Research Institute (MFRI) in Iceland (no fish were caught for the purpose of the experi-
ment). After a preliminary analysis of gear selectivity on fish length at age, we included only fish caught with 
longlines and bottom trawls. We selected otoliths from fish taken in commercial catches and scientific surveys 
sampled in the years 1929–2015 in the marine areas of southwest Iceland (Fig. 2; Supplementary Fig. S3). In 
order to capture growth patterns of multiple  cohorts15 we randomly selected 50 otoliths of fish age 8 (the most 
abundant of the mature age groups) or older and 3 individuals of age 10 or older from each year. In total, we 
included 3728 otoliths for growth analyses (Supplementary Fig. S4).

The otoliths were embedded in black epoxy and sectioned to a thickness of 1 mm with a Buehler IsoMet 
1000 Precision Saw with a diamond blade. We photographed the sections using a high-resolution digital camera 
Olympus DP74 connected to a stereomicroscope Leica S8 APO (apochromatic 8:1 zoom, high magnification up 
to 80x) under reflected light. CellSens Standard v. 1.18 and CellSens Dimension v. 1.18 software (https ://www.
olymp us-lifes cienc e.com/en/softw are/cells ens) was used for the image capture and editing, and for increment 
measurements.

The selection of the otoliths was based on the historical age estimates recorded in the MFRI database, which 
involved several age readers over the past century. As part of the biochronology measurements, all otoliths 
were subsequently re-aged by a single age reader (JDL) from otolith section images. Finally, to better assess the 
internal consistency of the age estimates, an expert cod otolith age reader re-aged ~ 24% of a random sample of 
the otolith images across the entire time series (N = 906). Re-ageing by a single experienced age reader allowed 
for the detection of possible confounding effects due to changes in ageing method or age reader over time. This 
re-ageing confirmed the absence of appreciable ageing bias between original and new age estimates through 
time, as well as a reasonably high ageing precision (coefficient of variation = 3.2%).

We measured growth increment widths along the distal axis marking the measurements on the medial edge 
of each translucent zone in order to ensure recognition of the last increment before the edge (Supplementary 
Fig. S5). Because the position of the core was not clear for every section, we marked the longest diameter of 
the first increment, then drew a line perpendicular to the growth increments along the distal axis and used the 
crossing point between this line and the diameter as the origin for the measurements. The total length of cod 
was strongly correlated with otolith width (Supplementary Fig. S6). Therefore, we assumed that otolith growth 
is proportional to somatic growth and applied otolith increment data as a proxy to directly reconstruct annual 
growth histories of individual fish. We excluded from the analysis the small number of measurements of the 
increments formed after the 10th year of the fish life. We also excluded measurements of the first and last (edge) 
increments because they did not represent complete growth through the year. In total, our analyses used 28,234 
measurements of the otolith increments formed in the years 1908–2014 (Supplementary Fig. S7).

Predictors of fish growth.  We selected potential intrinsic and extrinsic predictors of cod growth variation 
(Table 3). We considered systematic differences between fish individuals (FishID), years of otolith increment 
formation (Year) or groups of individual fish hatched in the same year (Cohort), treated as random effects. 
Fixed intrinsic variables included Age and Sex. We used mean monthly Sea Surface Temperature (SST) from 
HadISST  data58 within the main spawning area (63°N to 64°N, − 23°E to − 20°E) and whole Icelandic shelf (63°N 
to 67°N, − 27°E to − 11°E), as representing stock  area59 (Fig. 2; Supplementary Fig. S8). Although bottom water 
temperature would have been a preferable index of temperature exposure for the cod, the SST time series was 
used since it covered the entire time span of the otolith biochronology, and gridded HadISST data allowed for 
the additional analysis of spatial correlations. Annual mean SST and mean ocean temperature (0–700 m layers, 
World Ocean Database of the National Oceanic and Atmospheric Administration) in the years 1956–2014 in the 
Icelandic shelf area were reasonably well correlated (R = 0.83, df = 57, p < 0.001), therefore, SST was considered a 

https://www.olympus-lifescience.com/en/software/cellsens
https://www.olympus-lifescience.com/en/software/cellsens
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sufficient proxy for the thermal conditions experienced by the cod. Additional preliminary analysis on the lim-
ited data set showed that SST was a stronger predictor of cod growth than mean ocean temperature.

Overlooking other extrinsic non-climatic effects in the modeling of fish growth may result in the mistaken 
assignment of growth changes to particular sources of variation and overestimation of climatic  effects29. Thus, 
we included the annual abundance of fish at age groups (N) from the extended virtual population analysis (see 
Supplementary Note 1) as an index of stock abundance to control for density-dependent effects. We calculated 
the index by scaling the numbers within the age groups after logarithmic transformation (Supplementary Fig. S8), 
providing unique values for the given year and given  age34. We used harvest rate (HR), estimated in the extended 
virtual population analysis as the rate of observed yield to the biomass of 4 years and older fish to control the 
effects of harvesting, or fishing pressure, on growth.

Data analysis. Prior to the modeling, we log-transformed Increment width and Age to satisfy model 
assumptions, and mean-centered all continuous explanatory variables. We developed a series of mixed-effects 
models to test potential intrinsic and extrinsic sources of variation in fish  growth9. This modeling approach 
takes into account the hierarchical structure of the biochronological data (repeated measurements of otolith 
annual increments from one individual, year or cohort) and allows for robust assessment of different sources of 
 variation60.

In the first step, we determined the optimal random effect structure by comparison of models including dif-
ferent combinations of random intercepts for FishID, Year or Cohort, and random Age slopes for these three 
terms. The following formula was used to fit the intrinsic and extrinsic model:

where yijkl, annual growth y for fish i at age j (j = 2, …, 10) from year k (k = 1908, …, 2014) and cohort l (l = 1907, 
…, 2007), α0 is the overall growth intercept, αF

i  is the random intercept for fish i, αY
k  is the random intercept for 

year k, αC
l  is the random intercept for cohort l, β1xij is the age-dependent (j) decline in growth, bFijxij is the random 

age (j) slope for fish i, bYjkxjk is the random age (j) slope for year k , bCjl xjl is the random age (j) slope for cohort l, 
f(·) indicates fixed effects and their interactions with age (j). In this stage, models were fitted including all poten-
tial intrinsic effects (Age in interaction with Sex). We compared models with the Akaike information criterion 
corrected for the small sample sizes (AICc). Further, we identified optimal fixed intrinsic factors based on AICc 
comparisons of models with varying fixed effects complexity, while keeping the previously selected best-ranked 
random effect structure. We used the best linear unbiased predictors (BLUP) of the random effects to visualize the 
temporal patterns of fish growth variation. We extracted the BLUP from the best-ranked intrinsic model which 
did not incorporate random Age slopes for the Year or Cohort effects. By excluding the Age random slopes, we 
preserved any possible long-term changes of the age-growth relationships in the extracted BLUP time series.

In the second step, we introduced different extrinsic effects into the optimal intrinsic model identified in 
the first step of modeling. In order to make a non-arbitrary choice of the optimal time window for the monthly 
temperature variable (SST), we applied statistically-based sliding window analysis, similarly to previous biochro-
nological  studies5,61. We included mean values of investigated variables calculated from different absolute time 
windows within the 24 months counted back from the end of the growth year (December) in the subsequent 
models and compared these to the baseline intrinsic model treated as a null  hypothesis62. This approach allows 
one to test possible environmental signals affecting fish growth with different time  lags61. We included tem-
perature variables both with and without Age interaction and assumed a linear relationship. We identified the 
optimal predictor (variable with a critical time window) based on AICc results. Further, we ran 999 randomized 
iterations in which we reordered the date variable paired to the response (increment width) and removed any 

yijkl = α0 + αF
i + αY
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Table 3.  List of predictors of Atlantic cod growth.

Predictor Description

Random effects

FishID Unique identifier of the fish individual

Year Calendar year of otolith increment formation

Cohort Group of fish from the same spawning season

Fixed effects

Age Age of fish when growth increment was formed

Sex Sex of the individual

SSTspawn,  SSTshelf
Mean monthly sea surface temperature  data58 (1901–2014), aggregated over the main spawning area (subscript spawn) 
or Icelandic shelf (subscript shelf)

N Yearly data (1928–2014) on cod stock abundance of the age group, the results of the extended virtual population analysis, 
see Supplementary Note 1

HR Yearly data (1928–2014) on cod stock harvest rate (proportion of the fish harvested from the stock), the results of the 
extended virtual population analysis, see Supplementary Note 1
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dependency between extrinsic variables and fish  growth62. We compared the AICc result from the analysis to the 
AICc distribution of randomized models to quantify the likelihood of obtaining such model support by  chance63.

After identification of the optimal time window for SST based on the whole dataset (28,234 measurements 
for the years 1908–2014), remaining potential growth predictors (N and HR) were tested in the model with and 
without Age-interaction. Models for this comparison were developed based on a subset of data (26,436 meas-
urements for the years 1928–2014) due to the shorter time span of N and HR time series. The selected optimal 
extrinsic model was refitted with the scaled and centered response and explanatory variables in order to compare 
the relative effects of intrinsic and extrinsic environmental factors on fish growth.

In the third step, we used within-group  centering21 to determine if average population growth response to 
the temperature variability was dominated by a within-individual or an among-individual effect, i.e. individual 
phenotypic plasticity or among-individual differences in the environmental  conditions9,44. Using this technique, 
we replaced a temperature variable in the model by two new variables: (1) the average temperature conditions 
experienced by individuals across their lifetime and (2) the deviations of temperature from this mean; and 
compared to the baseline extrinsic model using AICc. Further, we replaced within-individual deviations with 
an original temperature variable to investigate differences in within-individual and among-individual  effects21.

In the fourth step, we extended the optimal extrinsic model by the addition of random slopes of the within-
individual component of the temperature variable for  FishID53. The following formula was used to fit the 
extended extrinsic model:

where βw(xik − xik) is the within-individual temperature slope, βAxik is the among-individual temperature slope, 
bFwi(xik − xik) is the random within-individual slope. With a mean-centered environmental variables in the 
model, the intercept equates to the expected growth of the individual in the average environment, while the 
slope parameter estimates the change in growth across an environmental gradient and is, therefore, a measure 
of individual phenotypic  plasticity10,23. Using this approach we examined variance and covariance in the random 
intercepts and linear slopes of individual fish responses to the changes in the environmental  conditions56. Further, 
using a simple Pearson correlation we investigated possible relationships between the cohort-specific variance 
of individuals’ thermal plasticity (BLUP of individual thermal reaction norm slopes) with mean environmental 
conditions experienced by the  cohort26,64. Only cohorts represented by more than five individuals were included.

Models during random effects optimization were fitted using a restricted maximal likelihood (REML), while 
fixed effects optimization used a maximal likelihood approach. The optimal models were then refitted with REML 
in order to obtain unbiased parameter estimates. We checked and satisfied assumptions of the final model with 
standard diagnostics and tested multicollinearity of the explanatory variables (variance inflation factors less than 
2). We calculated intraclass correlation coefficients of the intrinsic intercept-only models to assess the level of 
correlation between fish growth within individuals, years or cohorts, while the conditional and marginal  R2 met-
ric of the final model to assess the variance in fish growth explained by both fixed and random  effects9. Data on 
water temperature were extracted from the Royal Netherlands Meteorological Institute Climate Explorer website 
(https ://clime xp.knmi.nl). We used the R scientific computing  language65 with lme466 and climwin  packages62 
for the data analysis.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.

Received: 17 June 2020; Accepted: 21 September 2020

References
 1. IPCC. Special Report: The Ocean and Cryosphere in a Changing Climate (2019). https ://www.ipcc.ch/repor t/srocc /
 2. Huss, M., Lindmark, M., Jacobson, P., van Dorst, R. M. & Gårdmark, A. Experimental evidence of gradual size-dependent shifts 

in body size and growth of fish in response to warming. Glob. Chang. Biol. 25, 2285–2295 (2019).
 3. Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 

106, 12788–12793 (2009).
 4. Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).
 5. Smoliński, S. & Mirny, Z. Otolith biochronology as an indicator of marine fish responses to hydroclimatic conditions and ecosystem 

regime shifts. Ecol. Indic. 79, 286–294 (2017).
 6. Reed, T. E. et al. Responding to environmental change: Plastic responses vary little in a synchronous breeder. Proc. R. Soc. B 273, 

2713–2719 (2006).
 7. Ricker, W. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191, 382 (1975).
 8. Nussey, D. H., Clutton-Brock, T. H., Albon, S. D., Pemberton, J. & Kruuk, L. E. B. Constraints on plastic responses to climate vari-

ation in red deer. Biol. Lett. 1, 457–460 (2005).
 9. Morrongiello, J. R. & Thresher, R. A statistical framework to explore ontogenetic growth variation among individuals and popula-

tions: a marine fish example. Ecol. Monogr. 85, 93–115 (2015).
 10. Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. 

Evol. Biol. 20, 831–844 (2007).

yijkl = α0 + αF
i + αY

k + αC
l + β1xij + bF1ixij + bY1kxjk + bC1lxjl + βw(xik − xik)

+ bFwi(xik − xik)+ βAxik + f (·)+ εijkl
[

αF
i

bFji

]

∼N

(

0,
∑

i

)

,

[

αY
k

bYjk

]

∼ N

(

0,
∑

k

)

,

[

αC
l

bCjl

]

∼ N

(

0,
∑

l

)

, bFwi ∼ N
(

0, σ 2
F

)

, εijkl ∼ N
(

0, σ 2
)

https://climexp.knmi.nl
https://www.ipcc.ch/report/srocc/


12

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16708  | https://doi.org/10.1038/s41598-020-73652-6

www.nature.com/scientificreports/

 11. Paoli, A., Weladji, R. B., Holand, Ø & Kumpula, J. Early-life conditions determine the between-individual heterogeneity in plasticity 
of calving date in reindeer. J. Anim. Ecol. 89, 370–383 (2020).

 12. Campana, S. E. & Thorrold, S. R. Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations?. 
Can. J. Fish. Aquat. Sci. 58, 30–38 (2001).

 13. Campana, S. E. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age valida-
tion methods. J. Fish Biol. 59, 197–242 (2001).

 14. Black, B. A., Boehlert, G. W. & Yoklavich, M. M. Using tree-ring crossdating techniques to validate annual growth increments in 
long-lived fishes. Can. J. Fish. Aquat. Sci. 62, 2277–2284 (2005).

 15. Morrongiello, J. R., Thresher, R. E. & Smith, D. C. Aquatic biochronologies and climate change. Nat. Clim. Chang. 2, 849–857 
(2012).

 16. Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: The role of long-term, individual-based studies of animals in 
ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).

 17. Grønkjær, P. Otoliths as individual indicators: A reappraisal of the link between fish physiology and otolith characteristics. Mar. 
Freshw. Res. 67, 881–888 (2016).

 18. Bonamour, S., Chevin, L. M., Charmantier, A. & Teplitsky, C. Phenotypic plasticity in response to climate change: The importance 
of cue variation. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180178 (2019).

 19. Guindre-Parker, S. et al. Individual variation in phenotypic plasticity of the stress axis. Biol. Lett. 15, 1–7 (2019).
 20. van de Pol, M. Quantifying individual variation in reaction norms: How study design affects the accuracy, precision and power of 

random regression models. Methods Ecol. Evol. 3, 268–280 (2012).
 21. van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. 

Behav. 77, 753–758 (2009).
 22. Morrongiello, J. R., Sweetman, P. C. & Thresher, R. E. Fishing constrains phenotypic responses of marine fish to climate variability. 

J. Anim. Ecol. 88, 1645–1656 (2019).
 23. Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual 

plasticity. Trends Ecol. Evol. 25, 81–89 (2010).
 24. Hilborn, R., Quinn, T. P., Schindler, D. E. & Rogers, D. E. Biocomplexity and fisheries sustainability. Proc. Natl. Acad. Sci. 100, 

6564–6568 (2003).
 25. Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).
 26. Brommer, J. E., Merila, J., Sheldon, B. C. & Gustafsson, L. Natural selection and genetic variation for reproductive reaction norms 

in a wild bird population. Evolution 59, 1362–1371 (2005).
 27. Link, J. S., Bogstad, B., Sparholt, H. & Lilly, G. R. Trophic role of Atlantic cod in the ecosystem. Fish Fish. 10, 58–87 (2009).
 28. Drinkwater, K. F. The response of Atlantic cod (Gadus morhua) to future climate change. ICES J. Mar. Sci. 62, 1327–1337 (2005).
 29. Richardson, A. J. et al. Climate change and marine life. Biol. Lett. 8, 907–909 (2012).
 30. Lorenzen, K. & Enberg, K. Density-dependent growth as a key mechanism in the regulation of fish populations: Evidence from 

among-population comparisons. Proc. R. Soc. B Biol. Sci. 269, 49–54 (2002).
 31. Frater, P. N., Hrafnkelsson, B., Elvarsson, B. T. & Stefansson, G. Drivers of growth for Atlantic cod (Gadus morhua L.) in Icelandic 

waters—A Bayesian approach to determine spatiotemporal variation and its causes. J. Fish Biol. 95, 401–410 (2019).
 32. Eikeset, A. M. et al. Roles of density-dependent growth and life history evolution in accounting for fisheries-induced trait changes. 

Proc. Natl. Acad. Sci. USA 113, 15030–15035 (2016).
 33. Brander, K. M. The effect of temperature on growth of Atlantic cod. ICES J. Mar. Sci. 52, 1–10 (1995).
 34. Sinclair, A. F., Swain, D. P. & Hanson, J. M. Disentangling the effects of size-selective mortality, density, and temperature on length-

at-age. Can. J. Fish. Aquat. Sci. 59, 372–382 (2002).
 35. Pálsson, ÓK. A review of the trophic interactions of cod stocks in the North Atlantic. ICES Mar. Sci. Symp. 198, 553–575 (1994).
 36. Pálsson, ÓK. & Bjrnsson, H. Long-term changes in trophic patterns of Iceland cod and linkages to main prey stock sizes. ICES J. 

Mar. Sci. 68, 1488–1499 (2011).
 37. Denechaud, C., Smoliński, S., Geffen, A. J., Godiksen, J. A. & Campana, S. E. A century of fish growth in relation to climate change, 

population dynamics and exploitation. Glob. Chang. Biol. 26, 5661–5678 (2020).
 38. Beverton, R. J. H. & Holt, S. J. On the Dynamics of Exploited Fish Populations (Fisheries Investigations, 1957).
 39. Stige, L. C. et al. Density- and size-dependent mortality in fish early life stages. Fish Fish. 20, 962–976 (2019).
 40. Linehan, J. E., Gregory, R. S. & Schneider, D. C. Predation risk of age-0 cod (Gadus) relative to depth and substrate in coastal 

waters. J. Exp. Mar. Biol. Ecol. 263, 25–44 (2001).
 41. Mattson, S. Food and feeding habits of fish species over a soft sublittoral bottom in the Northeast Atlantic: 1. Cod (Gadus morhua 

L.) (Gadidae). Sarsia 75, 247–260 (1990).
 42. Bromley, P. J. Evidence for density-dependent growth in North Sea gadoids. J. Fish Biol. 35, 117–123 (1989).
 43. Schopka, S. A. Fluctuations in the cod stock off Iceland during the twentieth century in the fisheries and environment. ICES Mar. 

Sci. Symp. 198, 175–193 (1994).
 44. Martino, J. C., Fwoler, A. J., Doubleday, Z. A., Grammer, G. L. & Gillanders, B. M. Using otolith chronologies to understand long-

term trends and extrinsic drivers of growth in fisheries. Ecosphere 10, e02553 (2019).
 45. Stephens, P. A. & Sutherland, W. J. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 

14, 401–405 (1999).
 46. Brander, K. M. Patterns of distribution, spawning, and growth in North Atlantic cod: The utility of inter-regional comparisons. 

ICES Mar. Sci. Symp. 198, 406–413 (1994).
 47. Pálsson, ÓK. & Thorsteinsson, V. Migration patterns, ambient temperature, and growth of Icelandic cod (Gadus morhua): Evidence 

from storage tag data. Can. J. Fish. Aquat. Sci. 60, 1409–1423 (2003).
 48. Tanner, S. E. et al. Regional climate, primary productivity and fish biomass drive growth variation and population resilience in a 

small pelagic fish. Ecol. Indic. 103, 530–541 (2019).
 49. Zhai, L. et al. Phytoplankton phenology and production around Iceland and Faroes. Cont. Shelf Res. 37, 15–25 (2012).
 50. Heath, M. R. et al. Winter distribution, ontogenetic migration, and rates of egg production of Calanus finmarchicus southwest of 

Iceland. ICES J. Mar. Sci. 57, 1727–1739 (2000).
 51. Björnsson, B., Steinarsson, A. & Árnason, T. Growth model for Atlantic cod (Gadus morhua): Effects of temperature and body 

weight on growth rate. Aquaculture 271, 216–226 (2007).
 52. Björnsson, B. & Steinarsson, A. The food-unlimited growth rate of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 59, 

494–502 (2002).
 53. Arnold, P. A., Nicotra, A. B. & Kruuk, L. E. B. Sparse evidence for selection on phenotypic plasticity in response to temperature. 

Philos. Trans. R. Soc. B Biol. Sci. 374, 20180185 (2019).
 54. Imsland, A. K. & Jónsdóttir, ÓD. B. Linking population genetics and growth properties of Atlantic cod. Rev. Fish Biol. Fish. 13, 

1–26 (2003).
 55. Imsland, A. K. et al. A retrospective approach to fractionize variation in body mass of Atlantic cod Gadus morhua. J. Fish Biol. 78, 

251–264 (2011).
 56. Nussey, D. H., Clutton-Brock, T. H., Elston, D. A., Albon, S. D. & Kruuk, L. E. B. Phenotypic plasticity in a maternal trait in red 

deer. J. Anim. Ecol. 74, 387–396 (2005).



13

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16708  | https://doi.org/10.1038/s41598-020-73652-6

www.nature.com/scientificreports/

 57. Enberg, K. et al. Fishing-induced evolution of growth: Concepts, mechanisms and the empirical evidence. Mar. Ecol. 33, 1–25 
(2012).

 58. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth 
century. J. Geophys. Res. 108, 27–35 (2003).

 59. Sólmundsson, J., Jónsdóttir, I. G., Ragnarsson, S. A. & Björnsson, B. Connectivity among offshore feeding areas and nearshore 
spawning grounds: Implications for management of migratory fish. ICES J. Mar. Sci. 75, 148–157 (2018).

 60. Weisberg, S., Spangler, G. & Richmond, L. S. Mixed effects models for fish growth. Can. J. Fish. Aquat. Sci. 277, 269–277 (2010).
 61. Smoliński, S. Sclerochronological approach for the identification of herring growth drivers in the Baltic Sea. Ecol. Indic. 101, 

420–431 (2019).
 62. van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).
 63. Bailey, L. D. & van de Pol, M. climwin: An R toolbox for climate window analysis. PLoS ONE 11, 1–27 (2016).
 64. Dingemanse, N. J. & Dochtermann, N. A. Quantifying individual variation in behaviour: Mixed-effect modelling approaches. J. 

Anim. Ecol. 82, 39–54 (2013).
 65. R Core Team. R: A Language and Environment for Statistical Computing (2018).
 66. Bates, D. et al.lme4: Linear Mixed-Effects Models using “Eigen” and S4. R package version 1.1-12. https ://cran.r-proje ct.org/web/

packa ges/lme4/lme4.pdf (2016). doi:https ://doi.org/10.18637 /jss.v067.i01.
 67. Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 

101, 8741–8743 (2004).
 68. Amante, C. & Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical 

Memorandum NESDIS NGDC-24 (2009). https ://doi.org/10.7289/V5C82 76M

Acknowledgements
Funding for this work was provided by the Icelandic Research Fund Grant 173,906–051 to S.E. Campana. We 
thank Gróa Pétursdóttir for her expertise in confirming the age determinations of the otoliths.

Author contributions
S.E.C., A.J.G., J.A.G., S.S. and J.D.L. conceived and designed the study; J.D.L. and E.H. collected the data; S.S. 
analyzed the data and led the writing of the manuscript. All authors contributed critically to the drafts and gave 
final approval for publication.

competing interests 
The authors declare no competing interests.

Additional information
Supplementary information  is available for this paper at https ://doi.org/10.1038/s4159 8-020-73652 -6.

Correspondence and requests for materials should be addressed to S.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

http://cran.r-project.org/web/packages/lme4/lme4.pdf
http://cran.r-project.org/web/packages/lme4/lme4.pdf
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.7289/V5C8276M
https://doi.org/10.1038/s41598-020-73652-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Century-long cod otolith biochronology reveals individual growth plasticity in response to temperature
	Results
	Growth measurements. 
	Intrinsic and extrinsic sources of growth variation. 

	Discussion
	Materials and methods
	Otolith sampling and measurements. 
	Predictors of fish growth. 
	Data analysis. 

	References
	Acknowledgements


