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Abstract

The isotopic composition of inorganic carbon in otoliths (δ13Coto) can be a useful tracer of

metabolic rates and a method to study ecophysiology in wild fish. We evaluated environ-

mental and physiological sources of δ13Coto variation in Icelandic and Northeast Arctic

(NEA) cod (Gadus morhua) over the years 1914–2013. Individual annual growth increments

of otoliths formed at age 3 and 8 were micromilled and measured by isotope-ratio mass

spectrometry. Simultaneously, all annual increment widths of the otoliths were measured

providing a proxy of fish somatic growth. We hypothesized that changes in the physiological

state of the organism, reflected by the isotopic composition of otoliths, can affect the growth

rate. Using univariate and multivariate mixed-effects models we estimated conditional corre-

lations between carbon isotopic composition and growth of fish at different levels (within indi-

viduals, between individuals, and between years), controlling for intrinsic and extrinsic

effects on both otolith measurements. δ13Coto was correlated with growth within individuals

and between years, which was attributed to the intrinsic effects (fish age or total length).

There was no significant correlation between δ13Coto and growth between individuals, which

suggests that caution is needed when interpreting δ13Coto signals. We found a significant

decrease in δ13Coto through the century which was explained by the oceanic Suess effect-

admixture of isotopically light carbon from fossil fuel. We calculated the proportion of the

respired carbon in otolith carbonate (Cresp) using carbon isotopic composition in diet and dis-

solved inorganic carbon of the seawater. This approach allowed us to correct the values for

each stock in relation to these two environmental baselines. Cresp was on average 0.275

and 0.295 in Icelandic and NEA stock, respectively. Our results provide an insight into the

physiological basis for differences in growth characteristics between these two cod stocks,

and how that may vary over time.
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Introduction

Otoliths are calcium carbonate structures forming part of the acoustic-lateralis system in

fish. They grow by accretion of new material across the outer surface, a continuous process

throughout the life of the individual. Seasonal changes in the growth rate of fish induce the for-

mation of translucent and opaque zones in the otolith, which together typically form annual

increments. The incremental growth allows for the estimation of fish age and for attribution of

chemical signals to specific and discreet time periods (e.g. calendar years or seasons). Otolith

growth is strongly correlated with individual somatic growth [1], and the growth record and

chemical composition reflect the physiological state of an individual fish during its life and its

responses to changes in the environment [2].

Stable carbon isotope ratios in otoliths (δ13Coto) can provide information about the meta-

bolic state of fish [3]. The carbon in otolith aragonite is drawn from dissolved inorganic car-

bonate (DIC) in the ambient seawater and metabolically derived carbon released to the blood

stream from the respiration [4]. Carbon from metabolic sources is significantly 13C depleted

(e.g. from -20 to -17‰) when compared to seawater DIC (e.g., from 0 to 2‰). With knowl-

edge of δ13C in otoliths and environmental sources, it is possible to estimate Cresp—the propor-

tional contribution of the respired (metabolic) carbon in otolith. The relationship between

Cresp (estimated to range from 0 to 0.95 [3, 5, 6]) and oxygen consumption has been described

for several species, so Cresp is increasingly used as a proxy of field metabolic rate, an important

measure of physiological performance in free-ranging organisms. Oxygen consumption or

metabolic rate are challenging to measure in field conditions, particularly in aquatic environ-

ments. Most of the traditional methods are dedicated to laboratory-based research and their

adoption for free-swimming fish is logistically difficult [7]. Thus, the proxy provided by

δ13Coto is a valuable tool for ecophysiology [8, 9].

Field metabolic rate is the sum of three components: standard metabolic rate (minimum

metabolic rate needed to sustain life at a specified temperature), specific dynamic action (asso-

ciated with the cost of processing food), and activity metabolism (associated e.g. with swim-

ming, feeding, etc.) [8]. Estimates of field metabolic rate, calculated as Cresp, combined with the

estimates of assimilated energy, may provide information on the amount of energy available

for growth and reproduction—two biological processes which have a profound influence on

population resilience [8, 10]. Thus, Cresp as a proxy of field metabolic rates can be used for the

investigation of how fish grow and reproduce under different environmental conditions [9]. It

provides a unique method to study physiological ecology in fish at the individual level and

across the whole lifetime [3]. Moreover, considering the availability of historical otoliths in

archives worldwide, time series of Cresp calculated based on δ13Coto can provide a unique

opportunity for long-term retrospective assessment of the physiological performance of fish

[3, 8] and changes in the important attributes, e.g. diet variability or environmental tolerance

[11].

δ13Coto is affected both by intrinsic and extrinsic processes [12], which can complicate its

interpretation and the estimation of field metabolism. Age and growth rate, as well as tempera-

ture, trophic position, and depth distribution, are among the factors that have been shown to

influence δ13Coto through the changes in the metabolic activity of fish, or δ13C values in fish

diet and seawater DIC [13]. The contribution of the intrinsic and extrinsic factors needs to be

evaluated in order to interpret δ13Coto changes and to use Cresp as a metabolic proxy [3]. Studies

of the chemical composition of otoliths that simultaneously control for environmental (e.g.

temperature) or physiological effects (e.g. changes of the growth rate of individual fish) help to

disentangle different sources of variation and improve the ecological interpretation of chemi-

cal composition of otoliths [14–16].
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In this study, we measured the carbon isotopic composition of Icelandic and Northeast

Arctic (NEA) cod (Gadus morhua) otoliths over a century time scale (1914–2013) and ana-

lyzed the influence of intrinsic and extrinsic factors on δ13Coto. Icelandic and NEA cod have

ranked among the largest stocks of Atlantic cod in the world and are important components of

the marine ecosystem [17]. Icelandic cod occur primarily on the Icelandic shelf and spawn

around the island [18], but their main spawning ground is located off southwest Iceland [19].

NEA cod inhabit the Barents Sea and spawn mainly around the Lofoten archipelago along the

northwest coast of Norway [20] (Fig 1). The utilization of growth and otolith isotopic data

from two different, well-characterized, stocks enabled us to test a wider range of environmen-

tal conditions across a significant time period.

The aims of this study were i) to evaluate environmental and physiological sources of varia-

tion in δ13Coto; ii) to investigate the relationship between δ13Coto and fish growth; iii) to esti-

mate Cresp as a metabolic proxy based on δ13Coto. We used univariate and multivariate mixed-

effects models and estimated conditional correlations between carbon isotopic composition

and growth of fish controlling for different intrinsic and extrinsic effects on both otolith traits

(δ13Coto and increment width). We used a stable isotope mixing model to estimate the mean

proportion of metabolically derived carbon in otolith carbonate—a metabolic proxy that is

corrected for the differences between stocks in the isotopic composition of diet and environ-

ment. Our results provide an insight into the physiological basis for differences in growth char-

acteristics between these two cod stocks, and how that may vary over time.

Fig 1. Icelandic and Northeast Arctic cod (Gadus morhua) distribution areas. Sampling regions (dark grey polygons) and isobaths

(the light grey lines) are marked. The bounding box of the enlarged map is indicated with a solid polygon. The dashed polygons show

the areas from which predicted δ13CDIC values were gathered. Annual mean temperatures at depth for each location, extracted

respectively from the selected station (red dot) and the Kola section (solid blue line), are presented at the bottom corners. The map

was created based on the bathymetric [21] and shoreline [22] data.

https://doi.org/10.1371/journal.pone.0248711.g001
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Materials and methods

Otolith sampling and processing

Otoliths of Icelandic and NEA cod were collected from the archives of the Marine and Fresh-

water Research Institute in Hafnarfjörður, Iceland, and the Institute of Marine Research in

Bergen, Norway. All otoliths came from the sampling of the commercial catches and from sci-

entific surveys in the spawning areas in southwest Iceland (1929–2015) and around the Lofo-

ten archipelago (1933–2015) (Fig 1). Using archival information on fish age at capture, we

aimed at a random collection of 3 individuals caught at age 10+ per sampling year for each

stock (S1 Table of S1 File). Information about the location of catch (detailed geographical

coordinates or fishing area), date of catch, and biological parameters (total length and sex)

were available for most of the individuals. In total, otoliths of 436 fish (213 from Icelandic and

223 from NEA stock) were collected for the isotopic analysis, representing fish life history over

a century time scale (1914–2013).

The otoliths were embedded in epoxy resin and ~1 mm-thick transverse sections were cut

through the core to reveal the concentric layers of the annual growth increments. Otolith sec-

tions were photographed, and the width of each annual increment was measured from the

core to the outer edge along the distal axis following a standard protocol (Fig 2). Age was esti-

mated by one reader for each stock in order to maintain consistency and these estimates (not

archival) were used throughout analysis. Each increment was assigned to the year of formation

by counting back from the known date of capture and accounting for marginal increment

interpretation. Additionally, the majority of otolith increments from both stocks were visually

assessed and designated as “spawning zones” (the distinctive increments which are believed to

be formed after the onset of sexual maturation) using standard procedures for NEA cod age

reading [23, 24]. The first and last increment widths were excluded from further analysis since

Fig 2. Example of a cod otolith section showing the increment measurement axis (blue) and milled regions (growth increments formed at age 3 and 8 are located

between red crosses).

https://doi.org/10.1371/journal.pone.0248711.g002
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they may not reflect a whole year of growth. Further details on the otolith sampling, process-

ing, and measurement can be found in [25, 26].

Carbonate powder was milled from individual annual growth increments formed at age 3

and age 8 (Fig 2). In a few cases it was not possible to mill these increments and samples from

increments formed at age 2 (0.2% of samples) or age 7 (3.5% of samples) were collected (S2

Table of S1 File). Typically, two carbonate samples were obtained from each otolith. Otoliths

were milled with high precision using a computer-controlled Merchantek New Wave Micro-

Mill equipped with a digital camera. Translucent and opaque growth zones were combined in

one sample to provide a pooled isotope record for the entire year. Samples were drilled up to

750 μm depth (20–25 passes with a drill depth of 30 μm/pass) to obtain approximately 50 μg of

otolith carbonate powder in each sample. Further details on the carbonate powder sampling

procedure can be found in [27].

Analysis of carbon isotope ratios was conducted on a MAT 253 mass spectrometer at the

Institute of Geosciences, University of Bergen, Norway. Carbon isotopic ratios were reported

as in parts per thousand or per mil (‰) units with respect to the Vienna Pee Dee Belemnite

(VPDB) scale using NBS-19 (δ13C = 1.95‰) and NBS-18 (δ13C = -5.01‰) standards [28]

d
13C ¼

Rsample

Rstandard

� �

� 1

� �

� 103;

where R is the 13C/12C. The long-term reproducibility (1σ precision) of the equipment was

δ13C�0.4‰ for sample sizes greater than 13 μg based on replicate measurements of an inter-

nal carbonate standard over a period of months. Data were not corrected for the aragonite

acid fractionation.

Temperature data

Annual mean sea temperatures for the Icelandic spawning ground were extracted from Hadley

Centre EN4.2.1 dataset for the location 63˚00’ N 22˚00’ W (Fig 1) over the depths 0–200 m

[29]. The subsurface temperature in this area was assumed to be a proxy of the thermal condi-

tions experienced by the Icelandic cod. For NEA cod annual mean sea temperature data was

obtained from the stations 3–7 of the Kola section (from 70˚30’ N 33˚30’ E to 72˚30’ N 33˚30’

E, Fig 1) over the depths 0–200 m [30–32]. NEA cod are resident year-round in the Barents

Sea as juveniles, and once mature they only leave for their annual spawning migration lasting a

few months. Since most of the temperature variations in the Barents Sea and Lofoten spawning

area are driven by the same large-scale climatic factors associated with Atlantic water masses,

the Kola section is a good representation of the climatological temperatures within the area

occupied by the NEA cod throughout their whole life [20, 33, 34]. Both temperature time

series covered the entire period represented by the otolith growth and isotopic composition

measurements.

Modeling of otolith traits (δ13Coto and increment width)

Evaluation of environmental and physiological sources of variation in δ13Coto and

growth. A linear mixed-effects modeling framework [35, 36] was applied in order to take

into account repeated measurements (both δ13Coto and width of otoliths growth increment)

from the same individual or year of formation (Table 1). This method allows for the partition-

ing of the variance observed in the traits of cod otoliths with consideration of the intrinsic and

extrinsic sources of variation [37, 38]. Two separate univariate mixed-effects models were

developed, with either δ13Coto (representing metabolic processes) or increment width (repre-

senting somatic growth) as the response variable. Stock, Age, Sex, and body total length (TL, in
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cm) were treated as intrinsic effects in both models. The Age term was included in the δ13Coto

model as a fixed factor with two levels (3, 8), while in the increment width model Age was

included as a continuous covariate. Sex was included in both models as a fixed factor with

males, females, and individuals of unknown sex (lack of archival information) as separate

groups. The TL term was incorporated in order to correct model estimates and test the poten-

tial effects of certain phenotypes (e.g., fish with larger body size at age). We allowed for the

interaction between TL and Stock, as well as three-way interaction between Age, Sex, and

Stock. The characterization of increments as “spawning zones” was included with the binary

term (SZ: yes/no). Only relatively simple random structures, containing random intercepts for

individual fish (FishID) and year of otolith increment formation estimated for each stock

(StockYear), were tested in the model due to the limited number of observations. This allowed

us to assess the magnitude of the variation associated with between-individual and between-

year differences [39]. Increment width and Age were log-transformed before the analysis to

meet model assumptions of normality and homogeneity of variance. Fixed covariates (Age,

TL, AnomT, Year) were mean-centered in order to facilitate model convergence [37].

Mixed-effects models with different levels of complexity were compared using the Akaike

Information Criterion corrected for small sample sizes (AICc) to select the best base model

describing variation in otolith traits. The optimal random structure was selected by compari-

son of models fitted using restricted maximum likelihood (REML) and the most complex fixed

structures [37, 38]. The optimal fixed effects were selected by comparison of models fitted

using maximum likelihood and previously identified optimal random structures. In an addi-

tional analysis, the SZ term was added to the optimal intrinsic model to test for differences in

δ13Coto between increments assigned as “spawning zones” or not to test for metabolic signals

associated with reproduction. Further, the same optimal intrinsic model was extended by

using the anomaly of annual mean temperature calculated separately for each stock (AnomT;

based on the data gathered from the profile in SW Iceland and the Kola section). We allowed

for the interaction between AnomT and the stock term to test possible stock-specific effects of

temperature on otolith traits. Additionally, a continuous Year effect was added to allow for the

interaction with the stock term, in order to test for long-term stock-specific trends in the oto-

lith traits. Alternative models were again compared using AICc and the best-ranked model

was then refitted with REML, allowing unbiased parameter estimates [35]. Assumptions of the

final models were checked and satisfied with standard diagnostics. The significance of fixed

effects was assessed based on conditional F-tests with Kenward-Roger approximation for the

degrees of freedom [40]. Predicted effects of the variables selected during comparisons of

AICc were estimated and visualized. The intraclass correlation coefficient (ICC) was calculated

in order to assess between-individual and between-year differences in otolith traits [41, 42].

Table 1. General workflow and variables used in the consecutive steps of the statistical analysis.

Step Aim Modeling

framework

Response variable Random

structure

Fixed intrinsic

effects

Fixed extrinsic

effects

Mix sources

1. Evaluation of environmental and physiological

sources of variation in δ13Coto and growth

Univariate models δ13Coto or otolith

increment width

Fish ID,

StockYear

Stock, Sex, TL,

Age, SZ

AnomT, Year

2. Investigation of the relationship between δ13Coto
and growth

Bivariate model δ13Coto and otolith

increment width

Fish ID,

StockYear

Stock, Sex, TL,

Age

AnomT, Year

3. Estimation of Cresp as a metabolic proxy Stable isotope

mixing model

δ13Coto Fish ID,

StockYear

δ13Cdiet,

δ13CDIC

Fish ID—unique identifier of the fish individual; StockYear—stock-specific effect of the year; TL—total body length of fish; SZ—otolith “spawning zone” (included only

in the univariate modeling of δ13Coto); AnomT- temperature anomaly for the given area.

https://doi.org/10.1371/journal.pone.0248711.t001
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The conditional and marginal R2 metrics were calculated for both models to assess the amount

of variance in otolith traits explained by random effects alone and both fixed and random

effects, respectively [43].

Investigation of the relationship between δ13Coto and growth. The variables considered

in the analysis (δ13Coto and growth increment width) represent repeated measures of different

otolith traits that are not independent of one another [14]. Therefore, bivariate linear mixed-

effects models [44] with both measured otolith traits as response variables were developed.

Bivariate linear mixed-effects models allow for the simultaneous estimation of the variance of

each response and the covariance between them, at group levels specified within the random

effects structure [45]. Potential correlations of otolith traits can be decomposed into within-

individual, between-individual, and between-year correlations through the partitioning of the

variance at different levels of random effects [46]. Importantly, correlation estimates between

otolith traits obtained with multivariate mixed-effects models are unbiased and derived with

adequate quantification of uncertainty in specified random effects [47].

All bivariate linear mixed-effects models were fitted with the optimal random and fixed

effects identified during the development of univariate models [14]. Series of bivariate models

were built in order to attribute potential covariances to the set of intrinsic or combined intrin-

sic and extrinsic fixed effects [46]. Therefore, correlations between increment widths and

δ13Coto were tested within the bivariate framework which included i) random effects only, ii)

random effects and intrinsic fixed effects, and iii) random effects, intrinsic and extrinsic fixed

effects.

Measurements of increment width were available for all years of fish life, while δ13C in the

otolith carbonate was measured only from annual growth increments formed at age 3 and 8.

However, multivariate linear mixed-effects models are able to deal with missing values for

response variables [44]. The bivariate model with both otolith traits as response variables was

fitted to the data using a Bayesian approach and Markov Chain Monte Carlo methods [44].

Prior to the fitting, response variables were standardized to ensure similar scale, and growth

increment measurements were log-transformed to meet the assumptions of multivariate nor-

mality [14]. The estimates of parameters were evaluated based on the model run with parame-

ter-expanded priors for 120,000 iterations with a burn-in phase of 20,000 and a thinning

interval of 10. Model assumptions were checked by visual inspection of residuals and by analy-

sis of autocorrelation of the chains. The resulting matrices of within-individual, between-indi-

vidual, and between-year (co)variance of both otolith traits were used to calculate point

estimates and 95% credible intervals, which were further compared between models with dif-

ferent effects incorporated. Correlations where credible intervals did not overlap zero were

considered significant.

Estimation of Cresp as a metabolic proxy. Long-term trends in biogenic carbonate δ13C
measurements are subject to mis-interpretation due to the Suess effect, i.e. decrease of δ13CDIC

in the seawater due to the penetration of isotopically light fossil fuel CO2 into the oceans [48].

Therefore, following recommendations in previous historical and paleoclimate studies [3], the

δ13Coto values were corrected prior to the estimation of Cresp with the Bayesian stable isotope

mixing model using a Year slope estimated during univariate modeling.

The mean proportion of respiratory carbon in otolith carbonate (Cresp) was estimated

through a Bayesian stable isotope mixing model [49], using a two-source input mass balance

equation [50]:

d
13Coto ¼ Cresp � d

13Cdiet þ ð1 � CrespÞ � d
13CDIC þ ε;

where δ13Coto is the corrected δ13C measured in the otolith increments, while δ13Cdiet and

PLOS ONE Carbon isotopic composition in cod otoliths

PLOS ONE | https://doi.org/10.1371/journal.pone.0248711 April 1, 2021 7 / 19

https://doi.org/10.1371/journal.pone.0248711


δ13CDIC are the average δ13C values of the diet and DIC in seawater. Since Cresp represents pro-

portion, it is a unitless quantity. The ε term is the total net isotopic fractionation during carbon

exchange (between DIC and blood and between blood and endolymph in which the otolith is

formed), which was set to 2.7‰ [13, 51]. The values of δ13CDIC within the depth range occu-

pied by cod in each study area [52–56] were estimated based on the apparent oxygen utiliza-

tion values [57, 58] obtained from the Global Ocean Data Analysis Project version 2—

GLODAPv2 database [59] (see S1 File for the detailed description). The values of δ13Cdiet

were approximated based on the published information [60–64] (see S1 File for the detailed

description).

Bayesian models simultaneously consider isotopic variations of both sources (δ13CDIC and

δ13Cdiet) and their mixture (δ13Coto) and allow for the proper inclusion of uncertainty [65, 66].

Cresp was estimated separately for the Icelandic and NEA fish, taking into account the hierar-

chical structure of the data and repeated measurements by including FishID and Year as ran-

dom effects. The models were run with uninformative priors for 100,000 iterations with a

burn-in phase of 50,000 and a thinning interval of 50. Standard Gelman-Rubin and Geweke

diagnostics were used for the evaluation of models’ performance.

All analyses were conducted using the R scientific computing language [67] and the follow-

ing packages: lme4 [68], MCMCglmm [44], MixSIAR [49], MuMIN [69].

Results

Sources of variation in δ13Coto

A univariate model was developed to identify intrinsic and extrinsic effects on δ13Coto (see S1

File for the detailed results of the model selection procedure), which were later used to estimate

the correlations between δ13Coto and growth. Otoliths of Icelandic cod had higher δ13Coto than

those of NEA cod (Stock effect p<0.001). Fish at age 8 showed higher δ13Coto values than fish

at age 3 in both stocks, but the differences were not statistically significant (main Age effect

p = 0.409), nor was there a significant sex-related effect (term was excluded during model

selection based on AICc). δ13Coto decreased with TL at capture, but the effect was not statisti-

cally significant (p = 0.306). Overall, there was a decreasing trend in δ13Coto over the last cen-

tury (main Year effect p<0.001), with a larger decrease observed in Icelandic cod (mean values

of δ13Coto decreased by 0.7‰ over the past 100 years) compared to NEA cod (mean values

decreased by 0.3‰ over the past 100 years) (Table 2, Fig 3). There was no significant difference

in δ13Coto between “spawning zones” and normal increments (term was excluded during

model selection). Temperature did not have a significant effect on δ13Coto (AnomT term was

excluded during model selection). Both FishID (ICC = 0.418), and the Year random effects

(ICC = 0.111) explained a significant portion of the variance. Overall, random effects (FishID

and StockYear) explained the majority (conditional R2 = 0.61), while fixed effects explained

only a small fraction of δ13Coto variance (marginal R2 = 0.17) (Table 2).

Sources of variation in growth

The effects on growth rate were investigated with a univariate model (see S1 File for the

detailed results of the model selection procedure). Important intrinsic and extrinsic effects

were identified and included in the further step of the analysis in order to estimate correlations

between δ13Coto and fish growth rates conditioned on these effects. Fish growth, as represented

by increment width, decreased significantly with age (p<0.001), but there were different age-

related growth patterns in the two stocks (Age:Stock interaction p<0.001) (Fig 4a). The Icelan-

dic cod grew faster as young fish, and slower as old fish when compared to NEA cod, but there

was no detectable effect of sex (this term was excluded during model selection). No significant

PLOS ONE Carbon isotopic composition in cod otoliths

PLOS ONE | https://doi.org/10.1371/journal.pone.0248711 April 1, 2021 8 / 19

https://doi.org/10.1371/journal.pone.0248711


Table 2. Parameter estimates of the optimal univariate models for otolith carbon isotope ratios and increment width selected with AICc. Estimates are given for all

fixed effects with confidence intervals (CI) and significance (p). For the random effects residual variance (σ2), the variance associated with tested effects (τ00) and their

intraclass correlation coefficient (ICC) are given. The number of observations used to fit model and the amount of variance explained (marginal and conditional R2) are

specified.

Predictors δ13Coto Increment width

Estimates CI p Estimates CI p
Intercept -1.563 -1.648 –-1.477 <0.001 5.146 5.130–5.162 <0.001

Age (factor)� 0.036 -0.048–0.119 0.409

Age (factor)�:Stock�� 0.071 -0.043–0.186 0.223

Year -0.007 -0.010 –-0.004 <0.001

Year:Stock�� 0.004 -0.000–0.008 0.080

TL -0.203 -0.591–0.185 0.306 0.301 0.216–0.386 <0.001

Stock�� -0.404 -0.522 –-0.286 <0.001 0.041 0.018–0.063 <0.001

AnomT 0.020 -0.004–0.043 0.102

Age (continuous) -0.649 -0.669 –-0.630 <0.001

Age (continuous):Stock�� 0.133 0.105–0.161 <0.001

Random Effects

σ2 0.144 0.058

τ00 0.128 FishID 0.005 FishID

0.034 StockYear 0.001 StockYear

ICC 0.418 FishID 0.076 FishID

0.111 StockYear 0.021 StockYear

N of measurements 836��� 4243

N of random groups 436 FishID 436 FishID

183 StockYear 194 StockYear

Marginal R2 / Conditional R2 0.166 / 0.608 0.604 / 0.642

�estimates of the coefficient for increment formed at age 8 in relation to age 3.

��estimates of the coefficient for NEA stock in relation to Icelandic stock.

��� for 36 individuals only 1 measurement of δ13C was available.

https://doi.org/10.1371/journal.pone.0248711.t002

Fig 3. Effects of the variables predicted by the univariate model of carbon isotope ratios selected based on the AICc. The estimated Year slopes (c) which were

explained by the oceanic Suess effect were used to correct the δ13Coto values prior to the estimation of Cresp.

https://doi.org/10.1371/journal.pone.0248711.g003
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long-term linear trends were found in the growth data (Year term was excluded during model

selection). There was a positive, albeit not statistically significant, effect of temperature anoma-

lies (AnomT p = 0.102) on growth, which was supported by the model selection based on

AICc values (Table 2, Fig 4c). A higher proportion of variance in growth was associated

with the random effect of FishID (ICC = 0.076) when compared to random effects of Year

(ICC = 0.021), but most of the variance in the growth was explained by the fixed effects (mar-

ginal R2 = 0.60, conditional R2 = 0.64) (Table 2).

Correlation between δ13Coto and growth

In the bivariate models δ13Coto was significantly correlated with growth within-individuals

(R = -0.12; 95% credible interval, CI: -0.22 –-0.02) and between-years (R = -0.30; CI: -0.56

–-0.03). This can be attributed to the intrinsic factors since the correlations diminished after

incorporation of intrinsic or both intrinsic and extrinsic factors in the bivariate model. There

was no significant correlation of δ13Coto and growth between-individuals (R = -0.06; CI: -0.38–

0.26) (Fig 5).

Estimated Cresp

The estimated average Cresp was 0.275 (±0.006) for Icelandic cod and 0.295 (±0.007) for NEA

cod and the difference between stocks was significant (95% credible intervals of the estimated

difference did not overlap zero). There was noticeable interannual variability in the Cresp, but

the Year random effect estimates were characterized by the high uncertainty. There was no sta-

tistically significant synchrony in the estimated mean annual Cresp between the Icelandic and

NEA cod (R = -0.17, p = 0.117) (Fig 6).

Discussion

In Icelandic cod δ13Coto was significantly higher than in NEA cod. Differences in the mean

δ13Coto between stocks inhabiting distant areas are expected due to the differences in the

oceanographic and ecological conditions, as well as the metabolic activity of the fish [12]. Pre-

vious studies, for example in eastern Newfoundland, Canada, indicated that there was a gen-

eral similarity in δ13Coto within a more limited geographic area [13]. However, even in this

Fig 4. Effects of the variables predicted by the univariate model of otolith increment width selected based on the AICc.

https://doi.org/10.1371/journal.pone.0248711.g004
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relatively limited geographical space of eastern Newfoundland, different areas were character-

ized by particular lifetime patterns of δ13Coto indicating some degree of separation of individu-

als throughout their lives [13].

Although the δ13Coto from increments formed at age 3 were generally lower than from

increments formed at age 8, the differences among the ontogenetic stages were not statistically

significant. Previous studies on Atlantic cod and other species have shown a general increase

in δ13Coto with age [12, 50, 70]. This increase has been attributed to varying fish diet or decreas-

ing size-specific metabolic rate as fish get older, which means a lower contribution of the meta-

bolically derived carbon depleted in 13C [3, 5, 8]. It has been noted that δ13Coto values increase

through the early period of the life of fish, then reach a maximum around the time of sexual

maturation, and this period is followed by a stable plateau or decreasing trend as the fish grow

older [50]. A decrease in δ13Coto of mature cod was previously attributed to the migration of

the fish to deeper waters characterized by a lower δ13C in DIC [13, 50]. It is probable that a

large portion of the samples in our study collected from the annual increments formed at age 8

represents a period where the δ13Coto values had already declined with a changed depth distri-

bution, and therefore, differences between age groups were not highly pronounced.

We also observed a decrease in the δ13Coto with increasing TL. Intrinsic genetic variation in

maximum body size and growth among individuals or life-history types are linked with meta-

bolic rate [71]. Because most of the fish analyzed in this study were caught at age 10 or 11, the

TL effect reflects differences in life-long growth rate. The faster growing individuals are char-

acterized by lower δ13Coto, suggesting higher incorporation of metabolically derived carbon

(depleted in 13C) in addition to the DIC source during otolith calcification [72]. Therefore, the

Fig 5. Correlations between δ13Coto and growth increment width (mean value and 95% credible intervals) estimated within-

individual, between-individual, and between-years with the models incorporating different sets of effects (indicated with

colors). Significant correlations where credible intervals do not overlap zero are indicated with asterisks.

https://doi.org/10.1371/journal.pone.0248711.g005
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observed trend supports a relationship between δ13Coto and the individual’s metabolic rate,

which has been reported for different fish species based on field and experimental observations

[6, 8, 9].

There were declining trends in δ13Coto over the last century in both cod stocks. A much

stronger decline was observed in Icelandic cod (0.7‰ over the past 100 years), than for NEA

cod (0.3‰). We found no significant temporal trends in the otolith growth data, suggesting

that the trend in δ13Coto was associated with effects other than long-term changes in growth

rate. The observed trends in δ13Coto were consistent with direct observations and modeling

studies showing a continuous decline in δ13C in the seawater DIC over the postindustrial

period, caused by the penetration of isotopically light fossil fuel CO2 into the oceans,

referred to as the Suess effect [48]. A strong Suess effect has been observed in well-mixed

waters, and the North Atlantic Ocean is among the areas showing the strongest (more than

0.6‰ per century) decrease of δ13C in seawater [48]. A similar decrease (0.5‰ per century)

can be calculated based on the δ13Coto values reported for the years 1919–1992 in a previous

study on NEA cod otoliths [73]. We mathematically corrected for the Suess effect using esti-

mated linear year trends. Proper calibration of long-term otolith carbon isotopic data con-

cerning postindustrial depletion in seawater 13C is needed before they can be utilized for the

estimation of the changes in metabolic rates of fish [3]. Neglecting this effect may seriously

hamper the interpretation of the changes in δ13Coto and lead to an overestimation of the met-

abolic rates in the most recent periods [74]. Because the decrease in the seawater δ13C has a

nonlinear form, with a stronger decreasing trend over the last two decades, more precise

methods for the correction for the Suess effect than linear approximation should be applied

[75].

Fig 6. Year-specific (random effect; left panel; mean±sd) and global (right panel) estimates of the proportion of metabolically

derived carbon in otolith carbonate (Cresp) for Icelandic and NEA cod.

https://doi.org/10.1371/journal.pone.0248711.g006
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We found no statistically significant effect of temperature on δ13Coto, but the range of ther-

mal conditions observed in this study may be too small to reveal temperature effects on

δ13Coto. We hypothesized that metabolic factors would influence δ13Coto and thus we would

expect that increased temperature, leading to higher metabolic rates and oxygen demands,

should be reflected in decreased δ13Coto [8]. However, previous experimental and field studies

have not consistently shown the same correlation patterns between temperature and δ13Coto

[6]. For example, δ13Coto was not significantly affected by water temperature in laboratory-

reared plaice (Pleuronectes platessa) [72], a negative correlation was observed in laboratory-

reared Atlantic croaker (Micropogonias undulutus) larvae [76], a positive correlation was

observed in cod populations in the Northeast Atlantic [70], and a negative correlation in

various other fish species in the field [6]. These inconsistencies in the observed relationships

suggest a more complex set of controls on δ13Coto variation than temperature alone and appar-

ently reflect a combination of feeding and physiological processes, in addition to temperature

[70]. The impact of temperature on δ13Coto would not be expected to be direct, but rather indi-

rect through the influence on fish growth and metabolism [6, 50].

We controlled for different effects on lifelong growth rate in order to properly estimate cor-

relations between δ13Coto and fish growth rates and identify the intrinsic or extrinsic factors

which control them [14]. Our predictions from univariate models corroborate previous find-

ings. The growth of fish decreased significantly with age, which is a well-recognized effect [38].

The otolith increment growth proxy indicates that Icelandic cod grew faster in their early ages

(1–6) compared to the NEA cod, but the pattern was reversed in the older ages (7 and older).

Individuals with higher growth rates throughout their whole life have wider otolith increments

and we corrected for this effect by the inclusion of TL term, as higher length at age at point of

capture identified faster growing fish. We found positive, albeit not significant, effects of tem-

perature on otolith growth, which indirectly indicates a relationship between fish metabolism

and otolith growth [2].

Inter-individual variation in δ13Coto was approximately 4 times higher than interannual var-

iation in δ13Coto. Fish have different personalities expressed as individual behavioral differ-

ences, such as aggressiveness or shyness, which can be linked to differences in migration

patterns or food consumption [9]. The interpretation of environmental effects can be compli-

cated by different physiological responses and diversity of life histories of individual fish [2].

In our models, a high level of variance associated with the FishID effect, and low sample size,

reduce the statistical power to detect environmental effects and estimate population-level

changes in δ13Coto in relation to the environmental variability. Potential differences in the

δ13Coto between fish from the same locations but characterized by certain life-history types

would lead to valuable insights into ecophysiological processes over individual’s whole life-

time. In this study, only the migratory NEA cod were analyzed, and their stock identity con-

firmed by otolith morphology [77], but the Icelandic samples may have included fish of

different ecotypes [78].

We found correlations between δ13Coto and growth within-individuals, which reflect intrin-

sic processes and the changes in the assimilation of δ13C associated with growth rate differ-

ences through the ontogeny. However, we found no significant correlations of δ13Coto and

growth between-individuals. Similarly to our results, δ13Coto was not influenced by growth var-

iability within or across nursery sites of herring in Icelandic waters [79]. However, previous

studies showed that δ13Coto was negatively related to the growth rate of juvenile plaice (Pleuro-
nectes platessa) reared at 11 ˚C and tended to increase with growth at 17 ˚C [72], while δ13Coto

was negatively related to the growth rate of cod reared at 6 and 10 ˚C [5]. The absence of

between-individual correlation between δ13Coto and growth and the observed high interindi-

vidual variance in δ13Coto suggest that metabolic effects may be obscured in the field studies by
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a complex set of intrinsic and extrinsic effects. These effects were not fully controlled here in

these wild populations, as compared to experimental studies [5, 72].

Individual fish experience periods of higher and lower metabolic activity and growth

through the year [80], yet growth and δ13Coto in this study were measured at an annual resolu-

tion [13]. Due to uneven otolith accretion rates, annual otolith carbonate samples used in our

study represent a weighted mean [27]. Therefore, stronger correlations between δ13Coto and

growth may have been obscured. Sampling with higher temporal resolution would be neces-

sary to investigate seasonal changes in δ13Coto associated with differences in growth [81, 82].

These links between growth and the isotopic composition of otoliths have to be considered in

order to properly reconstruct past environmental histories based on the analysis of δ13Coto [5].

We found a significant negative correlation between δ13Coto and growth between-years

which was attributable to intrinsic factors. Since our otoliths were in general sampled in an

age-balanced manner through the study period, we could assign the observed differences in

δ13Coto directly to body size, representing a life-time growth rate. We observed lower δ13Coto in

otolith carbonates deposited in years characterized by more intensive fish growth. These nega-

tive correlations indicate depletion of 13C in otoliths at higher respiration rates [5] and corrob-

orate previous findings and model predictions for cod and other fish species [6, 50]. Typically

higher metabolism drives higher consumption and growth, however, higher metabolism can

exist also where feeding opportunities are poor and growth is lower [83]. In some cases, despite

differences in consumption and metabolic rates, similar growth rates can be observed between

fish of varying life-history types [84]. Since growth is a complex physiological phenomenon

involving the transformation of food into tissue and the transport of e.g. amino acids, proteins,

or lipids in the blood, the chemical composition of otoliths appears to be also an important

predictor of growth rate [2].

We calculated Cresp using approximated values of δ13CDIC and δ13Cdiet, which allowed us to

correct our estimates for each stock in relation to these two environmental baselines [3]. We

observed a higher mean Cresp for the NEA cod stock relative to the Icelandic stock. NEA cod is

known for its intensive migratory behavior [20, 85]. The long-term physiological state of NEA

cod associated with its migratory nature (i.e. elevated locomotor activity, respiration rate, and

oxygen consumption [86]) may therefore explain its higher metabolic rate and Cresp which was

inferred through the analysis of δ13Coto. Our results (Cresp = 0.275 and Cresp = 0.295 for Icelan-

dic and NEA cod, respectively) corroborate well with previous studies. For example, the mean

Cresp estimated based on δ13Coto for cod specimens collected from different locations in the

eastern North Atlantic was 0.2 [70]. A Cresp in the range of 0.07–0.43 was reported for cod in

the northeastern Scotian Shelf, Atlantic Canada [50]. The proportion of metabolically derived

carbon in the otoliths of larvae and early juvenile cod reared in a controlled laboratory experi-

ment was estimated to be 0.28–0.32 [5]. High agreement of the results obtained in these inde-

pendent studies suggests that carbon isotope composition in fish otoliths reflect the level of

aerobic activity and foraging patterns of wild fish [8, 87]. Retrospective analysis of metabolic

history can provide information on important lifestyle attributes, e.g. diet variability, environ-

mental tolerance, or population performance [11].

We based our Cresp estimations on i) measured δ13Coto, ii) predicted δ13CDIC using data on

measured AOU, iii) δ13Cdiet assumed based on the information available in the literature, iv)

fractionation factor (ε term) adopted from the previous cod otolith studies, and v) mathemati-

cal correction for the long-term trend attributed to the oceanic Suess effect. Each element of

this methodological approach introduces unavoidable uncertainties to the analysis, but it is the

fractionation factor that seems to be the most critical in the estimation of Cresp [81, 88, 89]. The

application of different ε term values can cause important differences in calculated Cresp values

[88]. We applied ε = 2.7% in order to make our findings comparable with previous results [5,
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13, 80], but further studies are needed to investigate the specific values of fractionation factor

among species and minimize the potential bias of Cresp estimations [3].

This study assessed different sources of variation in the carbon isotopic composition of oto-

liths in the two biggest cod stocks of the Atlantic cod. Our results show high inter-individual

variation in the δ13Coto signals, which make population-level inferences very difficult. We

emphasize the need to consider these inter-individual differences in the analysis of δ13Coto

data. Interpretation of δ13Coto signals remains challenging because of the intrinsic effects that

can influence δ13Coto, besides environmental conditions. Nonetheless, the consistent differ-

ences between Icelandic and NEA cod in their δ13Coto and Cresp provide evidence for underly-

ing physiological basis for the well-documented growth differences between these two stocks.

Similarly, observed within-individual and between-years correlations of δ13Coto and growth

indicate a link between the metabolic state of fish and the carbon isotopic composition. Analy-

sis of δ13Coto has the potential to indicate changes in the aerobic activity of wild fish [87], but

more detailed knowledge on the relationships between fish metabolism and δ13Coto is neces-

sary before δ13Coto and Cresp proxy can be applied to reconstruct the history of the metabolic

state of the wild fish populations.
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18. Jónsdóttir IG, Campana SE, Marteinsdottir G. Stock structure of Icelandic cod Gadus morhua L. based

on otolith chemistry. J Fish Biol. 2006; 69: 136–150. https://doi.org/10.1111/j.1095-8649.2006.01271.x

19. Brickman D, Marteinsdottir G, Logemann K, Harms IH. Drift probabilities for Icelandic cod larvae. ICES

J Mar Sci. 2007; 64: 49–59. https://doi.org/10.1093/icesjms/fsl019

20. Ellertsen B, Fossum P, Solemdal P, Sundby S. Relation between temperature and survival of eggs and

first-feeding larvae of northeast Arctic cod (Gadus morhua L.). Rapp P-v Réun Cons int Explor Mer.
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59. Olsen A, Kozyr A, Lauvset SK, Hoppema M, Pérez FF, Steinfeldt R, et al. The Global Ocean Data Anal-

ysis Project version 2 (GLODAPv2)–an internally consistent data product for the world ocean. Earth

Syst Sci Data. 2016; 8: 297–323.
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