
> T-SP-16305-2013<

1



Abstract— We propose a straightforward extension of the

Cooley-Tukey Fast Fourier Transform algorithm to handle m-

dimensional data. Our algorithm reduces the number of

multiplications needed when compared with the row-column

method and the vector transform method without increasing the

number of additions.

The decrease in the number of complex multiplications when

compared with the row-column method is asymptotically by a

factor m, as if multiplications were only used when transforming

one of the m dimensions.

The recursion relations which arise when analyzing the number

of operations for the new algorithm have a number of interesting

properties not seen before in the study of Fast Fourier Transforms.

Index Terms—Fast Fourier Transforms, Signal Processing

Algorithms, Computational Efficiency, Multivariate Recurrences

I. INTRODUCTION

HEN COMPARING different approaches to

transforming m-dimensional data the situation appears

still to be as described more than 20 years ago in a 1990 tutorial

by Duhamel & Vetterli [1] which may be paraphrased as

follows: The row-column algorithm is the one allowing the

easiest implementation and it can easily be parallelized. Vector

transforms have a lower number of arithmetic operations but

they are more complex. Polynomial transforms have a still

lower number of arithmetic operations but little work has been

done on finding the best way of implementing them.

Here we present a new algorithm for multi-dimensional

Discrete Fourier Transforms (DFT). It is an extension of the one

dimensional Cooley-Tukey Fast Fourier Transform (FFT) and

may both be seen as a variation and an improvement of the row-

column and the Vector transform algorithms. Its performance

in terms of arithmetic complexity is comparable to that of the

structurally more complex Polynomial transform of

Nussbaumer and Quandalle [2] and the method of Bernardini

[3] which is based on periodicity lattices.

In the new algorithm we work with all dimensions

Manuscript received October 15, 2013.

Þorgeir Sigurðsson is with the Icelandic Radiation Safety Authority, 150
Reykjavik, Iceland (e-mail: ts@gr.is).

Stefán I. Valdimarsson is with the Division of Mathematics, Science

Institute, University of Iceland, Dunhaga 5, 107 Reykjavik, Iceland (e-mail:
siv@hi.is).

simultaneously and try as much as possible to collect

multiplications across the dimensions. This is similar to the idea

behind the vector transform but we do the collection more

efficiently. We call the new algorithm the Diagonal FFT.

The algorithm is of a general nature and can be adapted for

all radices and also the split radix method. To simplify the

exposition we focus on the radix-2, radix-4 and the split radix

cases in the present paper.

Table 1 compares the number of complex multiplications in

the diagonal method with those in the row-column method and

the vector transform methods. With m dimensions and N = (2k)m

approaching infinity, the dominant term in the number of

multiplications is aNlgN with the constant a listed in the table.

TABLE 1

Value of the constant a in the dominant term aN lgN of

complex multiplications for very large FFTs.

Algorithm 2D 3D m-dimensions

Row-Column Radix 2 0.500 0.500 1/2

Row-Column Radix 4 0.375 0.375 3/8

Row-Column Split Radix 0.333 0.333 1/3

Vector Radix 2 0.375 0.292 (1/m) (1-2-m)

Vector Radix 4 0.234 0.164 1/(2m) (1-4-m)

Vector Split Radix 0.214 0.156
1

2𝑚
∙

2𝑚+1 − 2

2𝑚+1 − 1

Diagonal Radix 2 0.250 0.167 1/(2m)a

Diagonal Radix 4 0.188 0.125 3/(8m)a

Diagonal Split Radix 0.167 0.111 1/(3m)a

The formulae for the Vector radix 2 and Vector radix 4

algorithms can be found in [4] and [5]. The Vector Split Radix

algorithm is the one presented in [1] while it has also other

varieties with different performances [5].

The number of complex additions, not associated with

multiplications, is 𝑁 lg 𝑁, the same for all the algorithms in

Table 1.

Transforms that reduce the number of multiplications by a

factor 1/m over a row-column approach have been proposed, in

Sven Þ. Sigurðsson is with the Faculty of Industrial Engineering,

Mechanical Engineering and Computer Science, University of Iceland,
Dunhaga 5, 107 Reykjavik, Iceland (e-mail: sven@hi.is).

a For 𝑚 > 2 this is a conjecture, see section III.D for supporting evidence.

Reducing the multiplication count in m-

dimensional FFT by a factor m with classical

methods

Þorgeir Sigurðsson, Stefán I. Valdimarsson, Sven Þ. Sigurðsson

W

> T-SP-16305-2013<

2

particular the polynomial transform of Nussbaumer and

Quandalle [2] when the sizes of all dimensions are equal, see

also [4] where it is stated that this is the best known algorithm

for this case, and the more general periodicity lattice approach

of Bernardini [3]. These thus have the same asymptotic

multiplication count as the Diagonal transform. For finite

values of m the multiplication count for these transforms can be

lower but they have drawbacks in other respects. The method

of Nussbaumer and Quandalle uses three permutation steps (bit-

reversals) compared with one permutation step for the Diagonal

FFT and other algorithms of Cooley-Tukey type. The method

of Bernardini also uses extra permutations. The result is that the

total operation count, including multiplications, additions and

assignments, is smallest for the diagonal method. This is

discussed further in Section III.C.

The Diagonal transform can easily be parallelized. As in the

one dimensional Cooley-Tukey FFT, the data is recursively

split into two parts which are operated on independently. Thus

the potential for parallel operations and for operations that only

need to access data points not far apart is similar to the one

dimensional Cooley-Tukey situation.

In section II we explain the diagonal method by applying it

to the classic radix-2 FFT. In section III we give some results

for the number of multiplications the method uses in two

dimensions, both theoretical and empirical, in the case of radix-

4 and split-radix, as well as radix-2. Especially important is our

observation that in two dimensions the next term following the

dominant term is 𝑂(𝑁√lg 𝑁) while it is only 𝑂(𝑁) for the row-

column and vector transforms. Practical and theoretical

consequences of this are discussed.

II. DESCRIPTION OF THE ALGORITHM

A. Radix 2

The Diagonal FFT is based on the Cooley-Tukey method. For

one dimensional data of even length 𝑇𝑁 = (𝑥𝑖)𝑖=0
𝑁 we write the

discrete Fourier transform (DFT) (𝑋𝑘)𝑘=0
𝑁 of the data as

(1) 𝑋𝑘 = ∑ 𝑥2𝑖𝜔𝑁/2
𝑖𝑘

𝑁/2−1

𝑖=0

+ 𝜔𝑁
𝑘 ∑ 𝑥2𝑖+1𝜔𝑁/2

𝑖𝑘

𝑁/2−1

𝑖=0

where 𝜔𝑁 = 𝑒−𝑗2𝜋𝑁 is a primitive N-th root of unity.

The first summation expresses the DFT of the even-indexed

elements of the input vector 𝑥𝑖. The second summation

expresses the DFT of the odd-indexed elements. One additional

complex multiplication is needed for each of the N/2 elements

of the latter DFT output vector, compared with the former

vector. Finally we note that 𝑋𝑁/2+𝑘 has exactly the same

expression as 𝑋𝑘 except there is now a minus sign between the

two terms.

We write (1) as:

(2)

𝐷𝐹𝑇[𝑇𝑁](𝑘) = 𝐷𝐹𝑇[𝑇𝑁/2](𝑘) + 𝐷𝐹𝑇𝑜[𝑇𝑜𝑁/2](𝑘),

𝐷𝐹𝑇[𝑇𝑁](𝑁 2⁄ + 𝑘)

= 𝐷𝐹𝑇[𝑇𝑁/2](𝑘)

− 𝐷𝐹𝑇𝑜[𝑇𝑜𝑁/2](𝑘).

Here 𝑇𝑁/2 and 𝑇𝑜𝑁/2 denote the even-indexed and odd-indexed

elements of 𝑇𝑁 respectively and DFTo denotes the transform in

the second term of (1).

The DFTo is related to the ordinary DFT through (3) which

expresses the well known Shift theorem.

(3) 𝐷𝐹𝑇𝑜[𝑇𝑜𝑁/2](𝑘) = 𝜔𝑁
𝑘 𝐷𝐹𝑇[𝑇𝑜𝑁/2](𝑘)

In the row-column method, equations (2) and (3) are applied

recursively in the first dimension and then their equivalents are

applied successively for each of the other remaining

dimensions. In our method we postpone the multiplications in

(3) (one complex multiplication for each 𝑘 = 0 , . . . , 𝑁/
2 – 1) and work instead immediately with a new dimension.

We start by rewriting (2) for a T that is a m-dimensional

matrix of size N1 × N2…× Nm.

(4)

𝐷𝐹𝑇[𝑇𝑁1,𝑁2,…,𝑁𝑚
](𝑘1, 𝑘2, … , 𝑘𝑚)

= 𝐷𝐹𝑇[𝑇𝑁1/2,𝑁2,…,𝑁𝑚
]

+ 𝐷𝐹𝑇𝑜1 [𝑇𝑜1𝑁1/2,𝑁2,…,𝑁𝑚
],

𝐷𝐹𝑇[𝑇𝑁1,𝑁2,…,𝑁𝑚
](𝑁1/2 + 𝑘1, 𝑘2, … , 𝑘𝑚)

= 𝐷𝐹𝑇[𝑇𝑁1/2,𝑁2,…,𝑁𝑚
]

− 𝐷𝐹𝑇𝑜1 [𝑇𝑜1𝑁1/2,𝑁2,…,𝑁𝑚
].

Here, and in what follows, we omit (k1, k2, … km) from the right

hand sides of our equations.

We decompose 𝐷𝐹𝑇[𝑇𝑁1/2,𝑁2,…,𝑁𝑚
] further using (4) again

but we decompose DFTo1 into even and odd sub-transforms

along the second dimension as follows.

(5)

𝐷𝐹𝑇𝑜1 [𝑇𝑜1𝑁1/2,𝑁2,…,𝑁𝑚
] (𝑘1, 𝑘2, … , 𝑘𝑚)

= 𝐷𝐹𝑇𝑜1 [𝑇𝑜1𝑁1/2,𝑁2/2,𝑁3,…,𝑁𝑚
]

+ 𝐷𝐹𝑇𝑜1𝑜2 [𝑇𝑜1𝑜2𝑁1/2,𝑁2/2,𝑁3,…,𝑁𝑚
],

𝐷𝐹𝑇𝑜1 [𝑇𝑜1𝑁1/2,𝑁2,…,𝑁𝑚
] (𝑘1, 𝑁2/2 + 𝑘2, … , 𝑘𝑚)

= 𝐷𝐹𝑇𝑜1 [𝑇𝑜1𝑁1/2,𝑁2/2,𝑁3,…,𝑁𝑚
]

− 𝐷𝐹𝑇𝑜1𝑜2 [𝑇𝑜1𝑜2𝑁1 2⁄ ,𝑁2 2⁄ ,𝑁3,…,𝑁𝑚
].

Here we have introduced the notation 𝐷𝐹𝑇𝑜1𝑜2 for the

transform of 𝑇𝑜1𝑜2, the part of 𝑇𝑜1 with odd indices in the

second dimension.

If there are more than two dimensions we keep postponing

any multiplications and continue dividing the matrix into even

and odd transforms along the third dimension and then the

fourth, etc, until we reach the final dimension m.

For 𝐷𝐹𝑇𝑜1𝑜2 … 𝑜𝑚 we have:

(6)
𝐷𝐹𝑇𝑜1𝑜2 … 𝑜𝑚[𝑇𝑜1𝑜2 … 𝑜𝑚]

= 𝜔𝑁1

𝑘1𝜔𝑁2

𝑘2 … 𝜔𝑁𝑚

𝑘𝑚𝐷𝐹𝑇[𝑇𝑜1𝑜2 … 𝑜𝑚]

The transforms 𝐷𝐹𝑇𝑜1𝑜2 … 𝑜𝑚 and DFT are related through a

shift along a multidimensional diagonal, expressed by (6).

The boundary cases for this decomposition are when 𝑁𝑖 = 1

for some i. When that happens we eliminate the i-th dimension

from the indexing, For example a three dimensional array with

dimensions of sizes (𝑁1, 1, 𝑁3) is equivalent to a two

dimensional array with dimensions of sizes (𝑁1, 𝑁3).

We note that the recursive structure of the Diagonal FFT is

somewhat different from the structure for the row-column and

the vector transform FFTs. This is because we use different

paths to handle the even and odd cases. For example in three

dimensions, 𝑇𝑜1𝑜2 is handled by 𝐷𝐹𝑇𝑜1𝑜2 which breaks it into

> T-SP-16305-2013<

3

the even-indexed and the odd-indexed part in the third

dimension. The even-indexed part is again handled by

𝐷𝐹𝑇𝑜1𝑜2 whereas the odd-indexed part is handled by

𝐷𝐹𝑇𝑜1𝑜2𝑜3. In particular this means that the Diagonal FFT

cannot be described in terms of I/O tensors which are the

building blocks of the algorithms implemented in the popular

FFT system FFTW designed by Frigo and Johnson [6].

B. Split Radix and other radices

In the split radix algorithm, more precisely the conjugate pair

FFT [7] and [8], we split the second term in (1) into two pieces

(7)

𝑋𝑘 = ∑ 𝑥2𝑖𝜔𝑁/2
𝑖𝑘

𝑁/2−1

𝑖=0

+ 𝜔𝑁
𝑘 ∑ 𝑥4𝑖+1𝜔𝑁/4

𝑖𝑘

𝑁/4−1

𝑖=0

+ 𝜔𝑁
−𝑘 ∑ 𝑥4𝑖−1𝜔𝑁/4

𝑖𝑘

𝑁/4−1

𝑖=0

The first summation expresses the DFT of the even-indexed

elements (TN/2) of the input vector TN. The second summation

expresses the DFT of half of the remaining elements with

indices 4i+1 and beginning with x1, the third is the DFT of the

remaining quarter with indices 4i-1 beginning with x-1 (equal to

xN-1). One complex multiplication is needed for each of the N/4

elements of the two latter DFTs. This formula is used directly

to calculate 𝑋𝑘 for k less than N/4 and using that 𝜔𝑁
𝑁/4+𝑘

= 𝑗𝜔𝑁
𝑘

we can see that the rest of 𝑋𝑘 can be calculated without further

multiplications.

We write equation (7) as

(8)

𝐷𝐹𝑇[𝑇𝑁1,𝑁2,…,𝑁𝑚
] = 𝐷𝐹𝑇[𝑇𝑁1/2,𝑁2,…,𝑁𝑚

]

+ 𝐷𝐹𝑇𝑜𝑒1 [𝑇𝑜𝑒1𝑁1/4,𝑁2,…,𝑁𝑚
]

+ 𝐷𝐹𝑇𝑜𝑜1 [𝑇𝑜𝑜1𝑁1/4,𝑁2,…,𝑁𝑚
]

where we have introduced the notation Toe1 and Too1 for the

4j+1 and the 4j-1 indexed elements respectively.

Then we proceed as before, 𝐷𝐹𝑇[𝑇𝑁1/2,𝑁2,…,𝑁𝑚
] we

decompose further using (8) again but we decompose

𝐷𝐹𝑇𝑜𝑒1 [𝑇𝑜𝑒1𝑁1/4,𝑁2,…,𝑁𝑚
] along the second dimension as

follows

(9)

𝐷𝐹𝑇𝑜𝑒1 [𝑇𝑜𝑒1𝑁1/4,𝑁2,…,𝑁𝑚
]

= 𝐷𝐹𝑇𝑜𝑒1 [𝑇𝑜𝑒1𝑁1/4,𝑁2/2,…,𝑁𝑚
]

+ 𝐷𝐹𝑇𝑜𝑒1𝑜𝑒2 [𝑇𝑜𝑒1𝑜𝑒2𝑁1/4,𝑁2/4,…,𝑁𝑚
]

+ 𝐷𝐹𝑇𝑜𝑒1𝑜𝑜2 [𝑇𝑜𝑒1𝑜𝑜2𝑁1/4,𝑁2/4,…,𝑁𝑚
]

and similarly for 𝐷𝐹𝑇𝑜𝑜1[𝑇𝑜𝑜𝑁1/4,𝑁2,…,𝑁𝑚
]. We use

decompositions like these in each dimension and in the final,

m-th, dimension we do the multiplications, for example

(6)
𝐷𝐹𝑇𝑜𝑒1𝑜𝑒2 … 𝑜𝑒𝑚[𝑇𝑜𝑒1𝑜𝑒2 … 𝑜𝑒𝑚]

= 𝜔𝑁1

𝑘1𝜔𝑁2

𝑘2 … 𝜔𝑁𝑚

𝑘𝑚𝐷𝐹𝑇[𝑇𝑜𝑒1𝑜𝑒2 … 𝑜𝑒𝑚].

The boundary cases are when 𝑁𝑖 = 1 or 𝑁𝑖 = 2 for some i.

The case 𝑁𝑖 = 1 we handle as before and the 𝑁𝑖 = 2 case is

similar since two point DFTs do not require any multiplications.

Adapting the Diagonal method to other one dimensional

algorithms of Cooley-Tukey type, e.g. using other radices, is

similarly straightforward.

C. An implementation in two dimensions

A recursive implementation of the 2D Diagonal Radix 2 FFT is

outlined below. We assume N is equal to N1 × N2 where both N1

and N2 are integer powers of 2 and we construct the subroutines

𝐷𝐹𝑇, 𝐷𝐹𝑇𝑜1 and 𝐷𝐹𝑇𝑜1𝑜2 that perform the operations

described by (2), (5) and (6).

III. COMPLEXITY ANALYSIS

A. Complex Multiplications for Radix 2

We seek an expression for the number of complex

multiplications for the Radix 2 Diagonal FFT transform in two

dimensions. This is a somewhat arbitrary measure since

multiplications by 𝜔8 and powers of it use fewer real

> T-SP-16305-2013<

4

multiplications than multiplications by general complex

numbers. However, by studying the complex multiplication

count we get a good indicator of the properties of the real

multiplication count without too many technical difficulties.

We assume 𝑁1 = 2𝑘1 and 𝑁2 = 2𝑘2 and let 𝑀(𝑘1, 𝑘2),

𝑀𝑜(𝑘1, 𝑘2) and 𝑀𝑜𝑜(𝑘1, 𝑘2) denote the number of complex

multiplications needed for calculating 𝐷𝐹𝑇, 𝐷𝐹𝑇𝑜1, and

𝐷𝐹𝑇𝑜1𝑜2, respectively, of a matrix of size 𝑁1 × 𝑁2. By

examining equations (2), (5) and (6) we note the following

relationships

(7) 𝑀(𝑘1, 𝑘2) = 𝑀(𝑘1 − 1, 𝑘2) + 𝑀𝑜(𝑘1 − 1, 𝑘2),

(8)
𝑀𝑜(𝑘1 − 1, 𝑘2) = 𝑀𝑜(𝑘1 − 1, 𝑘2 − 1)

+ 𝑀𝑜𝑜(𝑘1 − 1, 𝑘2 − 1),
and

(9)

𝑀𝑜𝑜(𝑘1 − 1, 𝑘2 − 1)

= 𝑀(𝑘1 − 1, 𝑘2 − 1)

+ 2𝑘1−12𝑘2−1.
By inserting Moo from (9) into (8) and the resulting right hand

side into (7) we get

(10)

𝑀(𝑘1, 𝑘2) = 𝑀(𝑘1 − 1, 𝑘2) + 𝑀𝑜(𝑘1 − 1, 𝑘2 − 1)

+ 𝑀(𝑘1 − 1, 𝑘2 − 1)

+ 2𝑘1−12𝑘2−1.
Finally by replacing 𝑘2 with 𝑘2 − 1 in (7) and inserting into

(10) we get

(11)
𝑀(𝑘1, 𝑘2) = 𝑀(𝑘1 − 1, 𝑘2) + 𝑀(𝑘1, 𝑘2 − 1)

+ 2𝑘1−12𝑘2−1.
In the boundary cases, when either 𝑁1 or 𝑁2 is equal to 1, we

use the one dimensional radix 2 FFT so that

(12) 𝑀(𝑘, 0) = 𝑀(0, 𝑘) = 𝑘2𝑘−1 = 𝑁 lg(𝑁) /2.
The equation system (11) and (12) is a recurrence relation of

a kind that has not been seen before in the study of FFTs.

Namely, it is a two dimensional recurrence so to calculate

𝑀(𝑘1, 𝑘2) we need all the values 𝑀(𝑙1, 𝑙2) with 𝑙1 ≤ 𝑘1 and

𝑙2 ≤ 𝑘2.

For comparison we note that the multiplication count for the

row-column algorithm can be calculated as

𝑀𝑅𝐶(𝑘1, 𝑘2) = 2𝑘1𝑀𝑅𝐶(𝑘2) + 2𝑘2𝑀𝑅𝐶(𝑘1)

which directly uses the multiplication count for the one

dimensional row-column DFT and for the radix 2 vector

algorithm we have

𝑀𝑣𝑒𝑐𝑡𝑜𝑟(𝑘1, 𝑘2) = 4𝑀𝑣𝑒𝑐𝑡𝑜𝑟(𝑘1 − 1, 𝑘2 − 1) + 3 ∙ 2𝑘1+𝑘2−2

so in order to be able to calculate 𝑀𝑣𝑒𝑐𝑡𝑜𝑟(𝑘1, 𝑘2) we only need

to calculate 𝑀𝑣𝑒𝑐𝑡𝑜𝑟(𝑘1 − 𝑙, 𝑘2 − 𝑙) for l from 1 to min (𝑘1, 𝑘2).

To analyze the system (11) and (12) further we note that we

can satisfy (7) – (9) by setting

(13a) 𝑀(𝑘1, 𝑘2) = (𝑘1 + 𝑘2)2𝑘1+𝑘2−2 = 𝑁 lg(𝑁) /4

(13b) 𝑀𝑜(𝑘1, 𝑘2) = 𝑀(𝑘1, 𝑘2) + 2𝑘1+𝑘2−1

(13c)
𝑀𝑜𝑜(𝑘1, 𝑘2) = 𝑀𝑜(𝑘1, 𝑘2) + 2𝑘1+𝑘2−1

= 𝑀(𝑘1, 𝑘2) + 2𝑘1+𝑘2

and hence (13a) is a solution to (11) with the boundary

condition 𝑀(𝑘, 0) = 𝑀(0, 𝑘) = 𝑘2𝑘−2. This solution takes

care of the term 2𝑘1−12𝑘2−1 and half of the boundary

contribution in (12). In essense, it gives the multiplication count

we would have if we had as an efficient algorithm for one

dimensional DFTs as the one we are proposing for two

dimensional DFTs. Since this is not the case we must write 𝑀 =

𝑀1 + 𝑀2 where 𝑀1 corresponds to (13a) and 𝑀2 represents the

extra multiplications coming from the one dimensional DFTs.

We see that

(14) 𝑀2(𝑘1, 𝑘2) = 𝑀2(𝑘1 − 1, 𝑘2) + 𝑀2(𝑘1, 𝑘2 − 1)

with

(15) 𝑀2(𝑘, 0) = 𝑀2(0, 𝑘) = 𝑘2𝑘−2 = 𝑁 lg(𝑁) /4.
Clearly, 𝑀2(𝑘1, 𝑘2) is less than 𝑀1(𝑘1, 𝑘2).

It is possible to write down an explicit formula for 𝑀2(𝑘1, 𝑘2)

by counting the paths from (𝑘1, 𝑘2) to a boundary point, let us

say of the form (𝑖, 0), where each step consists of decreasing

one coordinate by one. The second to last point reached must

be (𝑖, 1), since the other possibility entails reaching the

boundary earlier, at (𝑖 + 1,0). The length of the path from

(𝑘1, 𝑘2) to (𝑖, 1) is 𝑘1 + 𝑘2 − 𝑖 − 1 and the second coordinate

is decreased 𝑘2 − 1 times so the number of paths is

(
𝑘1 + 𝑘2 − 𝑖 − 1

𝑘2 − 1
) and each such path contributes 𝑀2(𝑖, 0) =

𝑖2𝑖−2 to the value of 𝑀2(𝑘1, 𝑘2). When we also consider paths

that end at points of the form (0, 𝑖) and sum we get

𝑀2(𝑘1, 𝑘2) =
1

4
∑ 𝑖2𝑖

𝑘1

𝑖=1

(
𝑘1 + 𝑘2 − 𝑖 − 1

𝑘2 − 1
)

+
1

4
∑ 𝑖2𝑖

𝑘2

𝑖=1

(
𝑘1 + 𝑘2 − 𝑖 − 1

𝑘1 − 1
).

However, there does not exist a simple formula for

𝑀2(𝑘1, 𝑘2). We can study the generating function for it, which

is the function 𝐹(𝑥, 𝑦) defined as

(16) 𝐹(𝑥, 𝑦) = ∑ ∑ 𝑀2(𝑘1, 𝑘2)𝑥𝑘1𝑦𝑘2 .

∞

𝑘2=0

∞

𝑘1=0

By multiplying both sides of (14) with 𝑥𝑘1𝑦𝑘2 and summing

over all values of 𝑘1 and 𝑘2 for which it holds, namely 𝑘1, 𝑘2 ≥
1, we get that

∑ ∑ 𝑀2(𝑘1, 𝑘2)𝑥𝑘1𝑦𝑘2

∞

𝑘2=1

∞

𝑘1=1

= ∑ ∑ 𝑀2(𝑘1 − 1, 𝑘2)𝑥𝑘1𝑦𝑘2

∞

𝑘2=1

∞

𝑘1=1

+ ∑ ∑ 𝑀2(𝑘1, 𝑘2 − 1)𝑥𝑘1𝑦𝑘2

∞

𝑘2=1

∞

𝑘1=1

.

We rewrite each sum using (16) and the fact that 𝑀2(0,0) = 0

and get

𝐹(𝑥, 𝑦) − ∑ 𝑀2(𝑘1, 0)𝑥𝑘1

∞

𝑘1=1

− ∑ 𝑀2(0, 𝑘2)𝑦𝑘2

∞

𝑘2=1

= 𝑥 (𝐹(𝑥, 𝑦) − ∑ 𝑀2(𝑘1, 0)𝑥𝑘1

∞

𝑘1=1

)

+ 𝑦 (𝐹(𝑥, 𝑦) − ∑ 𝑀2(0, 𝑘2)𝑦𝑘2

∞

𝑘2=1

).

Since 𝑀2(𝑘, 0) = 𝑀2(0, 𝑘) = 𝑘2𝑘−2 we get that

> T-SP-16305-2013<

5

∑ 𝑀2(𝑘1, 0)𝑥𝑘1

∞

𝑘1=1

=
1

4
∑ 𝑘1(2𝑥)𝑘1

∞

𝑘1=1

=
𝑥

2(1 − 2𝑥)2
.

Using the analogous formula for the terms involving 𝑀2(0, 𝑘2)

and solving for 𝐹(𝑥, 𝑦) gives

(17) 𝐹(𝑥, 𝑦) =
1

2(1 − 𝑥 − 𝑦)
(

𝑥(1 − 𝑥)

(1 − 2𝑥)2
+

𝑦(1 − 𝑦)

(1 − 2𝑦)2
).

We can use a method from [9] and [10] which is called the

diagonal method in the theory of multivariate generating

functions, e.g. [11], to derive an expression for the generating

function for the diagonal terms 𝑀2(𝑘, 𝑘) which correspond to

the most interesting case, the square matrix when 𝑘1 = 𝑘2 = 𝑘.

This generating function is

𝐺2(𝑥) = ∑ 𝑀2(𝑘, 𝑘)𝑥𝑘 .

∞

𝑘=0

The first step is to make a substitution in (16) to get

𝐹 (
𝑥

𝑡
, 𝑡) = ∑ ∑ 𝑀2(𝑘1, 𝑘2) (

𝑥

𝑡
)

𝑘1

𝑡𝑘2

∞

𝑘2=0

∞

𝑘1=0

.

We re-index this sum by defining 𝑙 = 𝑘2 − 𝑘1 and use the

convention that 𝑀2(𝑘1, 𝑘2) = 0 if either index is negative. Then

𝐹 (
𝑥

𝑡
, 𝑡) = ∑ (∑ 𝑀2(𝑘1, 𝑘1 + 𝑙)𝑥𝑘1

∞

𝑘1=−∞

)

∞

𝑙=−∞

𝑡𝑙.

We see that 𝐺2(𝑥) appears as the inner sum in this expression

when 𝑙 = 0. By using the residue theorem from complex

analysis we get from this that

𝐺2(𝑥) =
𝑥

(1 − 4𝑥)
3
2

= 𝑥 ∑ (
−3/2

𝑘
)

∞

𝑘=0

(−4𝑥)𝑘

= ∑ (
−3/2
𝑘 − 1

)

∞

𝑘=1

(−4)𝑘−1𝑥𝑘

where we have used the generalized binomial theorem.1 If we

compare this with the definition of 𝐺2(𝑥) we see that

𝑀2(𝑘, 𝑘) = (
−3/2
𝑘 − 1

) (−4)𝑘−1

and if we simplify this using the definition of the binomial

coefficient we get

(18) 𝑀2(𝑘, 𝑘) =
𝑘

2
(

2𝑘
𝑘

).

In total we have

1To explain this in more detail we note from (15) that 𝐹(𝑥, 𝑦) is a rational

function which is defined (at least) in a neighbourhood of (0,0). Thus if 𝑥 is

small enough then 𝐹(𝑥 𝑡⁄ , 𝑡) is absolutely convergent in some annulus around

0. In fact this annulus encloses exactly those poles of 𝐹(𝑥 𝑡⁄ , 𝑡) which tend to

0 as 𝑥 tends to 0. Therefore, the residue theorem gives that

(19)

𝑀(𝑘, 𝑘) =
1

2
𝑘4𝑘 +

𝑘

2
(

2𝑘
𝑘

)

≈
1

2
𝑘4𝑘 +

1

2√𝜋
𝑘

1
24𝑘

−
1

16√𝜋
𝑘−

1
24𝑘 + 𝑂 (𝑘−

3
24𝑘)

=
1

4
𝑁 lg(𝑁) +

1

√8𝜋
𝑁√lg(𝑁)

−
1

8√2𝜋

𝑁

√lg(𝑁)
+ 𝑂 (

𝑁

(lg(𝑁))
3
2

).

where 𝑁 = 4𝑘 is the total number of entries in the matrix.

Comparing this with the corresponding formula for the row-

column algorithm,

(20) 𝑀𝑅𝐶(𝑘, 𝑘) = 𝑘4𝑘 =
1

2
𝑁 lg(𝑁)

we see that the dominant term, 𝑁 lg(𝑁), is reduced by a factor

of 2 but there are new terms of order 𝑁√lg(𝑁) and less.

Numerical comparison of these counts can be seen in Table 2.

TABLE 2

Number of complex multiplications for the 2D radix 2

versions of the diagonal method and of the row—column

method for a matrix of size 2𝑘 × 2𝑘.

k 4 6 8 10 12

𝑀(𝑘, 𝑘) 652 15,060 313,624 6,166,660 116,888,232

𝑀𝑅𝐶(𝑘, 𝑘) 1024 24,576 524,288 10,485,760 201,326,592

Ratio 63.7% 61.3% 59.8% 58.8% 58.1%

B. Real Multiplications

We now turn to the problem of counting real multiplications in

the algorithms considers. We say that multiplication by a

general complex number costs three real multiplications,

multiplications by powers of 𝜔8 which are not powers of 4 costs

two real multiplications and multiplication by powers of 𝜔4

costs no real multiplications. Then the number of real additions

used for these complex multiplications is the same as the

number of real multiplications.

The number of extra additions, i.e. those not associated with

complex multiplications is the same for each of the algorithms

considered,

𝐴𝑟𝑒𝑎𝑙(𝑘, 𝑘) = 4𝑘22𝑘 = 2𝑁 lg(𝑁)

and the total operation count is 2𝑀𝑟𝑒𝑎𝑙 + 𝐴𝑟𝑒𝑎𝑙 .

For the row-column radix 2 algorithm the real multiplication

count is as follows

𝑀𝑅𝐶
𝑟𝑒𝑎𝑙(𝑘, 𝑘) = 3𝑘22𝑘 − 10 ∙ 22𝑘 + 16 ∙ 2𝑘

=
3

2
𝑁 lg(𝑁) − 10𝑁 + 16√𝑁

and for the vector radix 2 algorithm it is exactly one quarter

less, or

𝐺2(𝑥) = ∑ Res

𝛼

(
𝐹(𝑥 𝑡⁄ , 𝑡)

𝑡
 , 𝛼)

where the sum is over those poles 𝛼 of 𝐹(𝑥 𝑡⁄ , 𝑡)/𝑡 which tend to 0 as 𝑥 tends

to 0. Calculating these residues gives the stated form of 𝐺2(𝑥).

> T-SP-16305-2013<

6

𝑀𝑣𝑒𝑐𝑡𝑜𝑟
𝑟𝑒𝑎𝑙 (𝑘, 𝑘) =

9

4
𝑘22𝑘 −

30

4
22𝑘 + 12 ∙ 2𝑘

=
9

8
𝑁 lg(𝑁) −

30

4
𝑁 + 12√𝑁.

Unfortunately, there does not exist such a simple formula for

the real multiplication count for the diagonal radix 2 algorithm.

However, it is possible to derive a good asymptotic formula.

We use a recurrence relation for 𝑀𝑑𝑖𝑎𝑔
𝑟𝑒𝑎𝑙 (𝑘1, 𝑘2) which is derived

in a similar manner to the system (12) and (13). The relation is

𝑀𝑑𝑖𝑎𝑔
𝑟𝑒𝑎𝑙 (𝑘1, 𝑘2) = 𝑀𝑑𝑖𝑎𝑔

𝑟𝑒𝑎𝑙 (𝑘1 − 1, 𝑘2) + 𝑀𝑑𝑖𝑎𝑔
𝑟𝑒𝑎𝑙 (𝑘1, 𝑘2 − 1)

+ 3 ∙ 2𝑘1+𝑘2−2 − 8 ∙ 2min(𝑘1,𝑘2)−1

which holds when 𝑘1, 𝑘2 ≥ 3. The boundary conditions are

𝑀𝑑𝑖𝑎𝑔
𝑟𝑒𝑎𝑙 (𝑘, 𝑙) = 𝑀𝑑𝑖𝑎𝑔

𝑟𝑒𝑎𝑙 (𝑙, 𝑘) = 2𝑙(3𝑘2𝑘−1 − 5 ∙ 2𝑘 + 8)

if 0 ≤ 𝑙 ≤ 2. We then introduce the generating function for

𝑀𝑑𝑖𝑎𝑔
𝑟𝑒𝑎𝑙 (𝑘1, 𝑘2) given by the expression

𝐹(𝑥, 𝑦) = ∑ ∑ 𝑀𝑑𝑖𝑎𝑔
𝑟𝑒𝑎𝑙 (𝑘1, 𝑘2)𝑥𝑘1𝑦𝑘2 .

∞

𝑘2=0

∞

𝑘1=0

With the recurrence relation we can find a closed form

expression for 𝐹(𝑥, 𝑦). By then using the aforementioned

diagonal method, we can extract an expression for the

generating function for the diagonal terms 𝑀𝑑𝑖𝑎𝑔
𝑟𝑒𝑎𝑙 (𝑘, 𝑘). This

turns out to be

𝐺(𝑥) = ∑ 𝑀𝑑𝑖𝑎𝑔
𝑟𝑒𝑎𝑙 (𝑘, 𝑘)𝑥𝑘

∞

𝑘=0

=
16𝑥3(2𝑥 + 1)(√1 − 4𝑥 + 2)

(1 − 4𝑥)2(1 − 2𝑥)
.

We write 𝐺(𝑥) as

𝐺(𝑥) =
3

2
(1 − 4𝑥)−2 +

3

4
(1 − 4𝑥)−

3
2 −

13

2
(1 − 4𝑥)−1

−
13

4
(1 − 4𝑥)−

1
2 + 𝑂(1)

and from this we can determine the asymptotics of 𝑀𝑑𝑖𝑎𝑔
𝑟𝑒𝑎𝑙 (𝑘, 𝑘)

which are

𝑀𝑑𝑖𝑎𝑔
𝑟𝑒𝑎𝑙 (𝑘, 𝑘) ≈

3

2
𝑘4𝑘 +

3

2√𝜋
𝑘

1
24𝑘 − 5 ∙ 4𝑘 −

43

16√𝜋
𝑘−

1
24𝑘

+ 𝑂 (𝑘−
3
24𝑘)

≈
3

4
𝑁 lg(𝑁) +

3

2√2𝜋
𝑁√lg(𝑁) − 5𝑁 −

43

8√2𝜋

𝑁

√lg(𝑁)

+ 𝑂 (
𝑁

(lg(𝑁))
3
2

).

These asymptotics are very accurate, apart from

𝑀𝑑𝑖𝑎𝑔
𝑟𝑒𝑎𝑙 (3,3) = 48 and 𝑀𝑑𝑖𝑎𝑔

𝑟𝑒𝑎𝑙 (4,4) = 544, the error is less than

1.2%. Further terms of this asymptotic expansion can be

calculated but they do not yield greater accuracy for the lowest

values of k.

For the row-column split radix algorithm the real

multiplication count is as follows

𝑀𝑅𝐶,𝑆𝑅
𝑟𝑒𝑎𝑙 (𝑘, 𝑘) = 2𝑘22𝑘 − 6 ∙ 22𝑘 + 8 ∙ 2𝑘

= 𝑁 lg(𝑁) − 6𝑁 + 8√𝑁

and for the vector split radix algorithm it is

𝑀𝑣𝑒𝑐𝑡𝑜𝑟,𝑆𝑅
𝑟𝑒𝑎𝑙 (𝑘, 𝑘) =

9

7
𝑘4𝑘 −

183

49
4𝑘 −

16

245
(−3)𝑘 +

24

5
2𝑘

=
9

14
𝑁 lg(𝑁) −

183

49
𝑁

−
16

245
(−1)

lg(𝑁)
2 𝑁

lg(3)
2 +

24

5
√𝑁.

There does not exist any simple formula for the real

multiplication count for the diagonal split radix algorithm, as

was the case for the radix 2 version. We therefore again seek to

derive a good asymptotic formula. The recurrence relation for

𝑀𝑑𝑖𝑎𝑔,𝑆𝑅
𝑟𝑒𝑎𝑙 (𝑘1, 𝑘2) is

𝑀𝑑𝑖𝑎𝑔,𝑆𝑅
𝑟𝑒𝑎𝑙 (𝑘1, 𝑘2) = 𝑀𝑑𝑖𝑎𝑔,𝑆𝑅

𝑟𝑒𝑎𝑙 (𝑘1 − 1, 𝑘2)

+ 𝑀𝑑𝑖𝑎𝑔,𝑆𝑅
𝑟𝑒𝑎𝑙 (𝑘1, 𝑘2 − 1)

− 𝑀𝑑𝑖𝑎𝑔,𝑆𝑅
𝑟𝑒𝑎𝑙 (𝑘1 − 1, 𝑘2 − 1)

+ 4𝑀𝑑𝑖𝑎𝑔,𝑆𝑅
𝑟𝑒𝑎𝑙 (𝑘1 − 2, 𝑘2 − 2) + 3 ∙ 2𝑘1+𝑘2−2

− 8 ∙ 2min(𝑘1,𝑘2)−1

which holds when 𝑘1, 𝑘2 ≥ 3. The boundary conditions are

𝑀𝑑𝑖𝑎𝑔,𝑆𝑅
𝑟𝑒𝑎𝑙 (𝑘, 𝑙) = 𝑀𝑑𝑖𝑎𝑔,𝑆𝑅

𝑟𝑒𝑎𝑙 (𝑙, 𝑘) = 2𝑙(𝑘2𝑘 − 3 ∙ 2𝑘 + 4)

if 0 ≤ 𝑙 ≤ 2.

As before we can extract an expression for the generating

function for the diagonal terms 𝑀𝑑𝑖𝑎𝑔,𝑆𝑅
𝑟𝑒𝑎𝑙 (𝑘, 𝑘). This turns out to

be

𝐺𝑆𝑅(𝑥) = ∑ 𝑀𝑑𝑖𝑎𝑔,𝑆𝑅
𝑟𝑒𝑎𝑙 (𝑘, 𝑘)𝑥𝑘

∞

𝑘=0

=
16𝑥3 (√1 − 4𝑥 + 2√(1 − 𝑥)(1 + 3𝑥 + 4𝑥2))

(1 − 2𝑥)√(1 − 𝑥)(1 + 3𝑥 + 4𝑥2)(1 − 4𝑥)2
.

We write 𝐺𝑆𝑅(𝑥) as

𝐺𝑆𝑅(𝑥) = (1 − 4𝑥)−2 +
1

√6
(1 − 4𝑥)−

3
2 − 4(1 − 4𝑥)−1

−
185

48√6
(1 − 4𝑥)−

1
2 + 𝑂(1)

and from this we can determine the asymptotics of

𝑀𝑑𝑖𝑎𝑔,𝑆𝑅
𝑟𝑒𝑎𝑙 (𝑘, 𝑘) which are

𝑀𝑑𝑖𝑎𝑔,𝑆𝑅
𝑟𝑒𝑎𝑙 (𝑘, 𝑘) ≈ 𝑘4𝑘 + √

2

3𝜋
𝑘

1
24𝑘 − 3 ∙ 4𝑘 −

149

48√6𝜋
𝑘−

1
24𝑘

+ 𝑂 (𝑘−
3
24𝑘)

≈
1

2
𝑁 lg(𝑁) +

1

√3𝜋
𝑁√lg(𝑁) − 3𝑁 −

149

48√3𝜋

𝑁

√lg(𝑁)

+ 𝑂 (
𝑁

(lg(𝑁))
3
2

).

These asymptotics are very accurate, apart from

𝑀𝑑𝑖𝑎𝑔,𝑆𝑅
𝑟𝑒𝑎𝑙 (3,3) = 48 and 𝑀𝑑𝑖𝑎𝑔,𝑆𝑅

𝑟𝑒𝑎𝑙 (4,4) = 432, the error is less

than 1%. Again, further terms do not yield greater accuracy for

the lowest values of k.

We turn now to radix 4. Here we will work with data of size

22𝑘1 × 22𝑘2 and again focus on the square case, when 𝑘1 = 𝑘2.

For the row-column radix 4 algorithm the real multiplication

count is as follows

> T-SP-16305-2013<

7

𝑀𝑅𝐶,𝑅4
𝑟𝑒𝑎𝑙 (2𝑘, 2𝑘) =

9

2
𝑘24𝑘 −

43

6
24𝑘 +

32

3
22𝑘

=
9

8
𝑁 lg(𝑁) −

43

6
𝑁 +

32

3
√𝑁

and for the vector radix 4 algorithm it is

𝑀𝑣𝑒𝑐𝑡𝑜𝑟,𝑅4
𝑟𝑒𝑎𝑙 (2𝑘, 2𝑘) =

45

16
𝑘24𝑘 −

69

16
24𝑘 + 6 ∙ 22𝑘

=
45

64
𝑁 lg(𝑁) −

69

16
𝑁 + 6 ∙ √𝑁.

Yet again there does not exist any simple formula for the real

multiplication count for the diagonal radix 4 algorithm but we

can derive a good asymptotic formula. The recurrence relation

for 𝑀𝑑𝑖𝑎𝑔,𝑅4
𝑟𝑒𝑎𝑙 (2𝑘1, 2𝑘2) is

𝑀𝑑𝑖𝑎𝑔,𝑅4
𝑟𝑒𝑎𝑙 (2𝑘1, 2𝑘2)

= 𝑀𝑑𝑖𝑎𝑔,𝑅4
𝑟𝑒𝑎𝑙 (2𝑘1 − 2, 2𝑘2)

+ 𝑀𝑑𝑖𝑎𝑔,𝑅4
𝑟𝑒𝑎𝑙 (2𝑘1, 2𝑘2 − 2)

+ 8𝑀𝑑𝑖𝑎𝑔,𝑅4
𝑟𝑒𝑎𝑙 (2𝑘1 − 2, 2𝑘2 − 2)

+ 𝐸(2𝑘1, 2𝑘2)

which holds when 𝑘1, 𝑘2 ≥ 1. The extra multiplications

𝐸(2𝑘1, 2𝑘2) equal
27

16
22𝑘1+2𝑘2 − 12 ∙ 22 min(𝑘1,𝑘2) if 𝑘1, 𝑘2 ≥ 1

and 𝑘1 ≠ 𝑘2; equal
27

16
24𝑘 − 10 ∙ 22𝑘 if 𝑘1 = 𝑘2 = 𝑘 ≥ 2; and

0 otherwise.

The boundary conditions are

𝑀𝑑𝑖𝑎𝑔,𝑅4
𝑟𝑒𝑎𝑙 (2𝑘, 0) = 𝑀𝑑𝑖𝑎𝑔,𝑅4

𝑟𝑒𝑎𝑙 (0,2𝑘) =
9

4
𝑘22𝑘 −

43

12
22𝑘 +

16

3

As before we can extract an expression for the generating

function for the diagonal terms 𝑀𝑑𝑖𝑎𝑔,𝑅4
𝑟𝑒𝑎𝑙 (2𝑘, 2𝑘). This turns out

to be

𝐺𝑅4(𝑥) = ∑ 𝑀𝑑𝑖𝑎𝑔,𝑅4
𝑟𝑒𝑎𝑙 (2𝑘, 2𝑘)𝑥𝑘

∞

𝑘=0

=
16 ((7 − 4𝑥)√1 − 16𝑥 + (20 + 112𝑥)√1 − 4𝑥)

(1 − 16𝑥)2(1 − 4𝑥)
3
2

.

We write 𝐺𝑅4(𝑥) as

𝐺𝑆𝑅(𝑥) =
9

4
(1 − 16𝑥)−2 +

3√3

8
(1 − 16𝑥)−

3
2

−
35

6
(1 − 16𝑥)−1 −

133√3

144
(1 − 16𝑥)−

1
2

+ 𝑂(1)

and from this we can determine the asymptotics of

𝑀𝑑𝑖𝑎𝑔,𝑅4
𝑟𝑒𝑎𝑙 (2𝑘, 2𝑘) which are

𝑀𝑑𝑖𝑎𝑔,𝑆𝑅
𝑟𝑒𝑎𝑙 (2𝑘, 2𝑘) ≈

9

4
𝑘24𝑘 +

3

4
√

3

𝜋
𝑘

1
224𝑘 −

43

12
∙ 4𝑖

−
185

288
√

3

𝜋
𝑘−

1
224𝑘 + 𝑂 (𝑘−

3
224𝑘)

≈
9

16
𝑁 lg(𝑁) +

3

8
√

3

𝜋
𝑁√lg(𝑁) −

43

12
𝑁 −

185

144
√

3

𝜋

𝑁

√lg(𝑁)

+ 𝑂 (
𝑁

(lg(𝑁))
3
2

).

These asymptotics are very accurate, apart from

𝑀𝑑𝑖𝑎𝑔,𝑅4
𝑟𝑒𝑎𝑙 (4,4) = 432, the error is less than 0.5%. Again, further

terms do not yield greater accuracy for the lowest values of 2k.

C. Numerical results on operation count

The following table presents numerical results of the

multiplication count. These numbers are all extracted from a C

implementation we have written for these algorithms. The

theoretical results of this section match with these numbers.

Note that number of multiplications is smallest for the

Nussbaumer and Quandalle algorithm followed closely by the

Diagonal algorithm. Furthermore, the difference between these

two multiplication counts is in each case far smaller than the

number of operations in the extra permutation steps which the

Nussbaumer and Quandalle algorithm uses. Thus the Diagonal

algorithm may be expected to perform the best on modern

computer architectures. This is indeed what we have found in

practice with the caveat that none of our implementations have

been optimized for speed. For that reason we do not present

running time data. Nevertheless, we feel that our results show

that the diagonal algorithm warrants strong consideration as a

simple, fast and practical multidimensional FFT algorithm.

TABLE 3

Number of real multiplications for a 2D matrix of size 2𝑘 × 2𝑘

divided by the number of output points (2 × 2𝑘 × 2𝑘). Here

R2 denotes Radix 2, R4 denotes Radix 4, SR denotes Split

Radix, and NQ is the polynomial method of Nussbaumer and

Quandalle. According to [3], the numbers for the method of

Bernardini are the same as for the NQ method.

k 4 6 8 10 12

R2 Row/Col 1.50 4.13 7.03 10.01 13.00

R2 Vector 1.13 3.09 5.27 7.51 9.75

R2 Diagonal 1.06 2.70 4.39 6.07 7.72

R2 NQ 1.03 2.50 4.00 5.50 7.00

R4 Row/Col 1.25 3.25 5.44 7.67 9.92

R4 Vector 0.84 2.11 3.48 4.88 6.28

R4 Diagonal 0.84 2.03 3.26 4.49 5.71

R4 NQ 0.84 1.95 3.08 4.20 5.33

SR Row/Col 1.25 3.06 5.02 7.00 9.00

SR Vector 0.84 2.02 3.28 4.56 5.85

SR Diagonal 0.84 1.91 3.01 4.10 5.18

SR NQ 0.84 1.83 2.83 3.83 4.83

D. Higher dimensions

Going to 𝑚 dimensions we have from (2), (5) and (6), similarly

as before, that

(21a)
𝑀(𝑘1, … , 𝑘𝑚) = 𝑀(𝑘1 − 1, 𝑘2, … , 𝑘𝑚)

+ 𝑀𝑜1(𝑘1 − 1, 𝑘2, … , 𝑘𝑚),

(21b)

𝑀𝑜1 … 𝑜𝑖(𝑘1 − 1, … , 𝑘𝑖 − 1, 𝑘𝑖+1, … , 𝑘𝑚)

= 𝑀𝑜1 … 𝑜𝑖(𝑘1 − 1, … , 𝑘𝑖+1 − 1, 𝑘𝑖+2, … , 𝑘𝑚)

+𝑀𝑜1 … 𝑜𝑖+1(𝑘1 − 1, … , 𝑘𝑖+1 − 1, 𝑘𝑖+2, … , 𝑘𝑚)

(21c)

𝑀𝑜1 … 𝑜𝑚(𝑘1 − 1, … , 𝑘𝑚 − 1)

= 𝑀(𝑘1 − 1, … , 𝑘𝑚 − 1)

+ 2𝑘1−1 ⋯ 2𝑘𝑚−1

> T-SP-16305-2013<

8

where (21b) holds for 𝑖 = 1, … , 𝑚 − 1. We can, in turn,

eliminate the terms 𝑀𝑜1 … 𝑜𝑖 for 𝑖 = 1, … , 𝑚 from these

equationsto obtain an inhomogeneous recurrence relation for

𝑀. For 𝑚 = 3 we thus e.g. get that

(22)

𝑀(𝑘1, 𝑘2, 𝑘3) = 𝑀(𝑘1 − 1, 𝑘2, 𝑘3)

+ 𝑀(𝑘1, 𝑘2 − 1, 𝑘3)

+ 𝑀(𝑘1, 𝑘2, 𝑘3 − 1)

− 𝑀(𝑘1 − 1, 𝑘2 − 1, 𝑘3)

− 𝑀(𝑘1 − 1, 𝑘2, 𝑘3 − 1)

− 𝑀(𝑘1, 𝑘2 − 1, 𝑘3 − 1)

+ 2𝑀(𝑘1 − 1, 𝑘2 − 1, 𝑘3 − 1)

+ 2𝑘1+𝑘2+𝑘3−3.
Further it is readily seen that we can satisfy the system (21)

by setting

(23a)
𝑀(𝑘1, … , 𝑘𝑚) = (𝑘1 + ⋯ + 𝑘𝑚)2𝑘1+⋯+𝑘𝑚 𝑚⁄

= 𝑁 lg(𝑁)/(2𝑚)

and

(23b)

𝑀𝑜1 … 𝑜𝑖(𝑘1, … , 𝑘𝑚)

= 𝑀𝑜1 … 𝑜𝑖−1(𝑘1, … , 𝑘𝑚) + 2𝑘1+⋯+𝑘𝑚 𝑚⁄

= 𝑀(𝑘1, … , 𝑘𝑚) + 𝑖2𝑘1+⋯+𝑘𝑚 𝑚⁄
for 𝑖 = 1, … , 𝑚. Thus (23a) will be a solution to the

corresponding recurrence relation in 𝑀 satisfying the boundary

condition

𝑀(0, 𝑘2, … , 𝑘𝑚) = (𝑘2 + ⋯ + 𝑘𝑚)2𝑘2+⋯+𝑘𝑚

and similar boundary conditions when some other 𝑘𝑖 = 0, for

𝑖 = 2, … , 𝑚.

However, the solution we are seeking must satisfy the

condition that 𝑀(0, 𝑘2, … , 𝑘𝑚) is the multiplication count

corresponding to a transform of dimension 𝑚 − 1. Since the

corresponding algorithm is less efficient than that of the

transformation of dimension 𝑚 we must take care of the

difference in multiplications by expressing the solution as

(24) 𝑀(𝑘1, … , 𝑘𝑚) = 𝑀1(𝑘1, … , 𝑘𝑚) + 𝑀2(𝑘1, … , 𝑘𝑚)

where 𝑀1 is given by (23a) and 𝑀2 is the solution of the

corresponding homogeneous recurrence relation in 𝑀 with

boundary conditions that take care of the difference in

multiplications.

It is possible to write down the generating function for 𝑀2

but the diagonal method is not applicable and therefore we

cannot find a generating function for the diagonal terms.

However, there is evidence that the asymptotic order of 𝑀2 is

less than 𝑂(𝑁 lg(𝑁)) and we tentatively conjecture that it is

𝑂 (𝑁(lg 𝑁)
1

2). Then asymptotically we have that the

multiplication count for the m dimensional diagonal method is

one m’th of the corresponding operation count for one

dimensional data of the same size.

Let us briefly outline how further work in these asymptotic

studies could proceed. It is possible to derive asympotic

formulas directly from multivariate generating functions. This

area of research has been quite active in the last decade or so,

see e.g. the recent book [11]. To understand how the theory

applies let us go back to two dimensions and the simplest

example, namely equation (17). We can write 𝐹(𝑥, 𝑦) as the

sum of two rational functions, one of which is

𝐹̃(𝑥, 𝑦) =
𝑥(1 − 𝑥)

2(1 − 𝑥 − 𝑦)(1 − 2𝑥)2
= ∑ ∑ 𝑎𝑘1,𝑘2

𝑥𝑘1𝑦𝑘2

∞

𝑘2=0

∞

𝑘1=0

.

It turns out that the asymptotics of the coefficients 𝑎𝑘1,𝑘2

depend on the direction of the vector (𝑘1, 𝑘2). If (𝑘1, 𝑘2) goes

to infinity along a line through the origin with slope less than 1

then the asymptotic form of the coefficients is dominated by a

point on the line 𝑥 = 1/2 where the second factor in the

denominator is 0. Such a point is called a smooth point in [11].

But if the slope of the line which (𝑘1, 𝑘2) goes to infinity along

is greater than 1 then the asymptotic form of the coefficients is

dominated by the point (1/2,1/2) where both factors in the

denominator are 0. Such a point is called a multiple point in

[11]. However, the line we are most interested in, when 𝑘1 =
𝑘2 falls exactly between these two cases and this border case is

not studied in as great a detail in [11] as the other two cases.

Therefore there is quite a bit of manual labor to be done to apply

this new theory in our setting.

REFERENCES

[1] P. Duhamel and M. Vetterli, "Fast Fourier-transforms: a tutorial
review and a state of the art," Signal Process., vol. 19, no. 4, pp.

259-299, Apr 1990.
[2] H. J. Nussbaumer and P. Quandalle, "Fast computation of discrete

Fourier-transforms using polynomial transforms," IEEE Trans.

Acoust. Speech Signal Process., vol. 27, no. 2, pp. 169-181, 1979.
[3] R. Bernardini, "A new multidimensional FFT based on one-

dimensional decompositions," IEEE Trans. Circ. and Syst. II, vol.

47, no. 10, pp. 1123-1126, Oct 2000.
[4] R. E. Blahut, Fast algorithms for signal processing. Cambridge,

UK: Cam. Uni. Press, 2010.

[5] Z. D. Chen and L. J. Zhang, "Vector coding algorithms for
multidimensional discrete Fourier transform," J Comput Appl Math,

vol. 212, no. 1, pp. 63-74, Jan 2008.

[6] M. Frigo and S. G. Johnson, "The design and implementation of
FFTW3," Proc. IEEE, vol. 93, no. 2, pp. 216-231, Feb 2005.

[7] I. Kamar and Y. Elcherif, "Conjugate pair fast Fourier-transform,"

Electron. Lett., vol. 25, no. 5, pp. 324-325, Mar 1989.
[8] R. A. Gopinath, "Comment on: ‘Conjugate pair fast Fourier

transform’," Electron. Lett., vol. 25, no. 16, p. 1084, Aug 1989.

[9] H. Furstenberg, "Algebraic functions over finite fields," J. Algebra,
vol. 7, pp. 271--277, 1967.

[10] M. L. J. Hautus and D. A. Klarner, "The diagonal of a double power

series," Duke Math. J., vol. 38, pp. 229--235, 1971.
[11] R. Pemantle and M. C. Wilson, Analytic combinatorics in several

variables. Cambridge, UK: Cam. Uni. Press., 2013.

