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A story

Joint work with
Þorgeir Sigurðsson at the Icelandic Radiation Safety Authority
Sven Þ. Sigurðsson at the University of Iceland (Emeritus)

The diagonal algorithm for m-dimensional discrete Fourier
transforms (DFT)

Simple — based on the Cooley–Tukey method
Fast — reduces number of multiplications by a factor of m
compared with row–column method (asymptotically)
Interesting — analysis of operation count

Caveat — Polynomial methods are fast(er)
(Nussbaumer–Quandalle), also Bernadini

Few implementations exist
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The Cooley–Tukey method (one dimension)

DFT of a vector (xi) of length N a power of 2. (ω = e−j2π/N)
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The Cooley–Tukey method graphically
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Bitreversal

Two small DFTs

Multiplications 1 ω8 i ω3
8

butterflies

x̂0 x̂1 x̂2 x̂3 x̂4 x̂5 x̂6 x̂7

N = 2k , Mk = 2Mk−1 + 2k−1, Mk = k2k−1 =
1
2N lg(N)
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Radix 2 and split radix

Real multiplications: one complex = three real
Radix 2

Multiplications 3
2N lg(N) − 5N + 8

Split radix

Multiplications N lg(N) − 3N + 4
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The Row–Column and the Vector algorithms

The Row–Column method

x̂k1,k2 =
N−1∑
i1=0

N−1∑
i2=0

xi1,i2ω
i1k1+i2k2
N =

N−1∑
i2=0

N−1∑
i1=0

xi1,i2ω
i1k1
N

ωi2k2
N

The Vector method

DFT in the small squares, multiplication in shaded ones

Then use butterflies
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Real multiplication count

Radix 2 Split radix

1-D 3
2N lg(N) + O(N) N lg(N) + O(N)

2-D row–col 3
2N lg(N) + O(N) N lg(N) + O(N)

2-D vector 9
8N lg(N) + O(N)

9
14N lg(N) + O(N)

2-D diagonal 3
4N lg(N) + O(N

√
lg(N))

1
2N lg(N) + O(N

√
lg(N))

Total operation count: A + 2M = 2N lg(N) + 2M.
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The Diagonal Algorithm

Pass more efficiently along the dimensions.
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Multiplication count

Complex multiplications for matrix of size
N = N1 × N2 = 2k1 × 2k2 .

M(k1, k2) = M(k1 − 1, k2) + Mo(k1 − 1, k2),

Mo(k1 − 1, k2) = Mo(k1 − 1, k2 − 1) + Moo(k1 − 1, k2 − 1),
Moo(k1 − 1, k2 − 1) = M(k1 − 1, k2 − 1) + 2k1−12k2−1

Reduces to

M(k1, k2) = M(k1 − 1, k2) + M(k1, k2 − 1) + 2k1−12k2−1

Boundary conditions

M(k, 0) = M(0, k) = M(k) = k2k−1
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Analysis

M(k1, k2) = M(k1 − 1, k2) + M(k1, k2 − 1) + 2k1−12k2−1

M(k, 0) = M(0, k) = k2k−1

M1(k1, k2) = (k1 + k2)2k1+k2−2 solves inhomogeneous part
Then M = M1 + M2 with

M2(k1, k2) = M2(k1 − 1, k2) + M2(k1, k2 − 1)
M2(k, 0) = M2(0, k) = k2k−2

Generating function for M2
∞∑

k1=0

∞∑
k2=0

M2(k1, k2)xk1yk2 =
1

2(1 − x − y)

( x(1 − x)
(1 − 2x)2 +

y(1 − y)
(1 − 2y)2

)
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Diagonal coefficients

DFT of a square matrix N = N1 × N1 = 2k × 2k

Then M(k, k) = k22k−1 + M2(k, k) = 1
4N lg(N) + M2(k, k)

Generating function for M2 is

F2(x , y) = 1
2(1 − x − y)

( x(1 − x)
(1 − 2x)2 +

y(1 − y)
(1 − 2y)2

)
Diagonal method

G2(x) =
1

2πi

∮ F2(x/τ, τ)

τ
dτ =

∞∑
k=0

M2(k, k)xk

G2(x) =
x

(1 − 4x)3/2 =
∞∑

k=0

k
2

(
2k
k

)
xk
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Real multiplications

Radix 2 Split radix

G(x) 16x3(1+2x)(2+
√

1−4x)
(1−4x)2(1−2x)

16x3(
√

1−4x+2
√

(1−x)(1+3x+4x2))

(1−4x)2(1−2x)
√

(1−x)(1+3x+4x2)

G(x) 3
2

1
(1−4x)2 + 3

4
1

(1−4x)3/2 + . . . 1
(1−4x)2 + 1√

6
1

(1−4x)3/2 + . . .

M(N) 3
4N lg (N) + 3

2
√

2π
N
√

lg(N) 1
2N lg (N) + 1√

3π
N
√

lg(N)
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Numbers in two dimensions

Real multiplications

k (N × N = 2k × 2k) 3 5 7 9 11
Radix 2 Row-Col 64 5,632 182,272 4,464,640 96,501,760
Radix 2 Vector 48 4,224 136,704 3,348,480 72,376,320
Radix 2 Diagonal 48 3,808 116,064 2,741,952 57,853,536

Split Radix Row-Col 64 4,352 132,096 3,149,824 67,125,248
Split Radix Vector 48 2,928 87,024 2,058,096 43,676,400
Split Radix Diagonal 48 2,800 80,624 1,865,200 38,963,440

NQ is the algorithm of Nussbaumer–Quandalle
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Real multiplications

k (N × N = 2k × 2k) 3 5 7 9 11
Radix 2 Row-Col 64 5,632 182,272 4,464,640 96,501,760
Radix 2 Vector 48 4,224 136,704 3,348,480 72,376,320
Radix 2 Diagonal 48 3,808 116,064 2,741,952 57,853,536
Radix 2 NQ 48 3,600 106,512 2,490,384 52,428,816
Split Radix Row-Col 64 4,352 132,096 3,149,824 67,125,248
Split Radix Vector 48 2,928 87,024 2,058,096 43,676,400
Split Radix Diagonal 48 2,800 80,624 1,865,200 38,963,440
Split Radix NQ 48 2,736 76,464 1,747,632 36,350,640

NQ is the algorithm of Nussbaumer–Quandalle
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Higher dimensions

Complex multiplications in three dimensions

M(k1, k2, k3) =M(k1 − 1, k2, k3) + M(k1, k2 − 1, k3)

+ M(k1, k2, k3 − 1) − M(k1 − 1, k2 − 1, k3)

− M(k1 − 1, k2, k3 − 1) − M(k1, k2 − 1, k3 − 1)
+ 2M(k1 − 1, k2 − 1, k3 − 1) + 2k1+k2+k3−3

M(k1, k2, 0) =M(k1, 0, k2) = M(0, k1, k2) = M(k1, k2)

Particular solution to inhomogeneous problem

M1(k1, k2, k3) = (k1 + k2 + k3)2k1+k2+k3−1/3

Generating function or M2 = M − M1.
G(x , y , z)

(1 − 2x)2 · · · (1 − x − y) · · · (1 − x − y − z + xy + xz + yz − 2xyz)
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Addendum

Asymptotics of multivariate sequences
Analytic Combinatorics in Several Variables by Pemantle and
Wilson (2013)

F (x , y) =
∞∑

r=0

∞∑
s=0

ar ,sx r y s

ar ,s =
1

(2πi)2

∮ ∮ F (x , y)
x r+1y s+1 dxdy

Asymptotics in a fixed direction r = (r , s) = |r|(r̂ , ŝ) as
|r| → ∞
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Addendum

Our function

ar ,s =
1

(2πi)2

∮ ∮ G(x , y)
(1 − 2x)2(1 − 2y)2(1 − x − y)x r+1y s+1 dydx

|x r y s | = exp(r log |x | + s log |y |)
For a fixed direction (r̂ , ŝ) look for points where
H(x , y) = (1 − 2y)2(1 − x − y)3 = 0 and r log |x | + s log |y | is
minimized.
Smooth points vs. mutliple points
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