Stjarneðlisfræði og heimsfræði á Íslandi 2: Tímabilið 1780-1870 (c) Þyngdarfræði Newtons

Yfirlit um greinaflokkin

Enginn raunvísindamaður hefur fengið jafn mikla umfjöllun í rituðu máli og Newton, nema ef vera skyldi Einstein. Fyrir utan sívaxandi fjölda bóka og nær óteljandi greinar um þennan fyrsta „nútíma“ stjarneðlisfræðing, ævi hans og vísindaafrek, persónuleika, rannsóknir í efnaspeki og biblíufræðum, sem og opinber embættisstörf, er hans getið í öllum almennum alfræðiritum og flestum ef ekki öllum byrjendakennslubókum í eðlisfræði og stærðfræði fyrir framhaldsskóla og háskóla.

Í fyrri færslum þessa greinaflokks var fjallað stuttlega um Newton og verk hans á völdum stöðum. Hér verður athyglinni fyrst og fremst beint að þyngdarfræði hans og hvernig upplýsingar um hana bárust íslenskri alþýðu á sínum tíma. Þeim lesendum, sem vilja kafa dýpra en hér er gert, má benda á eftirfarandi heimildir:

Ísak Newton 1689, tveimur árum eftir að meistaraverkið Stærðfræðilögmál náttúruspekinnar kom út. Málverk eftir G. Kneller.

Þyngdarfræði Newtons var upphaflega sett  fram í þriðja hluta Stærðfræðilögmála náttúruspekinnar árið 1687. - Í fyrsta hlutanum er hins vegar lagður grunnur að sígildri aflfræði, sem er nauðsynleg undirstaða, þegar beita skal þyngdarlögmáli Newtons, auk þess sem hún hefur mikilvægt og almennt notagildi í eðlisfræði, verkfræði, daglegu lífi og víðar. Þar er jafnframt fjallað um miðlæga krafta, einkum þó miðsóknarkraftinn. Sýnt er fram á, að þegar slíkur kraftur breytist í öfugu hlutfalli við fjarlægðina frá kraftmiðjunni í öðru veldi, eru brautir agna í kraftsviðinu  keilusnið og bent á tengsl þeirrar niðurstöðu við lögmál Keplers. Þá er þar að finna fyrstu þekktu tilraunina til að glíma við þraut, sem nú gengur undir nafninu þriggja-hnatta vandamálið.

Annar hluti bókarinnar fjallar svo að mestu um áhrif viðnáms gegn hreyfingu og ýmsa þætti úr straumfræði, sem Newton notar í lokin til að sýna fram á, að hvirflakenning Descartes getur alls ekki útskýrt hreyfingar himintunglanna.

Þess ber að geta, að þetta merka tímamótaverk Newtons er að hluta byggt á rannsóknum forvera hans, einkum þó Keplers, Galíleós, Descartes, Huygens og Hookes. Afrek höfundarins fólst meðal annars í því að taka saman gagnlegustu þættina úr verkum fyrrnefndra spekinga, innleiða ný hugtök og reikniaðferðir og jafnframt að móta nýja aðferðafræði í náttúruspeki, sem notuð er enn þann dag í dag.

 

Örfá orð um aflfræði

Eðlisfræði fyrir byrjendur í framhalds- og háskólum hefst yfirleitt á umfjöllun um grundvallaratriði aflfræðinnar. Oftast er nemendum tjáð, að námsefnið sé byggt á hugmyndum Newtons, eins og þær voru settar fram í fyrsta hluta Stærðfræðilögmála náttúruspekinnar. Hins vegar er venjulega sleppt að geta þess, að hin stærðfræðilega framsetning Newtons á aflfræðinni er ákaflega torskilin og að það var ekki fyrr en L. Euler kom til sögunnar um miðja átjándu öld, sem aðrir en fremstu stærðfræðingar upplýsingarinnar gátu nýtt sér hugmyndir meistarans að einhverju gagni.

Sú framsetning á aflfræðinni, sem kennd er í háskólum, er að mestu komin frá Euler og byggir á örsmæðareikningi, þar sem hið þægilega táknmál Leibniz er notað í stað rúmfræðilegra reikniaðferða Newtons. Sem dæmi má nefna, að annað hreyfingarlögmál Newtons fékk það form, sem nú er notað, í mikilvægri grein eftir Euler árið 1752 (sjá nánar um þetta efni hér).

Í þessari færslu verður ekki fjallað frekar um hina margslungnu sögu aflfræðinnar sem slíkrar, en þeim, sem hafa áhuga á efninu, er bent á eftirfarandi heimildir:

 

Þyngdarlögmálið

Í jarðmiðjuheimi fornaldar og miðalda gengu náttúruspekingar nær undantekningarlaust út frá því sem vísu, að lögmál stjörnuheimsins væru allt önnur en þau, sem ríktu á jörðu niðri. Þegar sólmiðjukenning Kóperníkusar fór fyrir alvöru að ryðja sér til rúms á sautjándu öld, varð jörðin smám saman hluti af stjörnuheiminum í hugum lærdómsmanna og nokkrir þeirra tóku að velta fyrir sér þeim möguleika, að ef til vill væru lögmálin ekki svo ólík á himni og jörðu. Þar voru fremstir í flokki þeir Kepler og Descartes, sem báðir settu fram eðlisfræðileg afbrigði af sólmiðjukenningunni, án þess þó að hafa erindi sem erfiði. Um þetta var fjallað í síðustu færslu, en frekari kynningu á vangaveltum fyrri tíma um þyngdina má meðal annars finna í eftirfarandi heimildum:

Eins og allir vita, hélt Newton því réttilega fram, að beita mætti framsetningu hans á aflfræðinni hvar sem er í sólkerfinu og að þyngdarlögmál hans gæfi ekki aðeins rétta mynd af áhrifum þyngdarinnar á jörðinni, heldur útskýrði það jafnframt hreyfingar himintungla í sólkerfinu. Þessar niðurstöður birti hann í De mundi systemate (Um heimskerfið), sem er þriðji hluti Stærðfræðilögmála náttúruspekinnar.

Með því að nota nútíma orðalag má setja þyngdarlögmálið fram á eftirfarandi hátt: Tveir punktmassar, m1 og m2, dragast hvor að öðrum með jafnstórum gagnstæðum kröftum, F1 og F2, með stefnu eftir tengilínu massanna. Ef fjarlægðin milli punktanna er r, gildir að F1 = F2 = Gm1m2/r2, þar sem G er stuðull, sem kenndur er við Newton. Til að formúlan komi að fullum notum þarf til viðbótar að beita öðru hreyfingarlögmáli Newtons, F = ma, þar sem a er hröðun (umfjöllun um aðferðafræðina má finna í aflfræðibókum). Formúla Newtons fyrir þyngdina gildir einnig fyrir tvo hnetti með kúlalaga massadreifingu, ef r er nú sett jafnt fjarlægðinni milli miðju hnattanna.

Hluti af síðu 170 í fyrstu kennslubókinnni í náttúruspeki, sem notuð var í íslenskum skóla, Naturlærens mechaniske Deel (1844) eftir H. C. Örsted. Þarna færir höfundurinn rök fyrir því, að þyngdaráhrif hnattar með kúlusamhverfa massadreifingu (BDEF) á punktmassa A hafi stefnu eftir línunni ABCE, þar sem punkturinn C er miðja hnattarins. Á næstu síðum bókarinnar er svo sagt frá því (en ekki rökstutt), að krafturinn sé hinn sami og ef allur massi hnattarins væri í C. Eins og frægt er orðið, sannaði Newton þetta fyrstur manna í Stærðfræði-lögmálum náttúruspekinnar og nú má auðveldlega finna sönnunina í aflfræðinámsefni háskólanema í raunvísindum.

Þessi skemmtilega skýringarmynd Newtons er úr verkinu A Treatise of the System of the World, sem hann samdi árið 1685, en kom ekki á prenti fyrr en að honum látnum, árið 1728. Myndin á að sýna, hvernig þyngdin ákvarðar flugbraut hluta í lofttæmi. Það er láréttur upphafshraði fallbyssukúlu á fjallstoppnum V, sem ræður braut kúlunnar. Ef skothraðinn er yfir ákveðnu lágmarki (en þó ekki of mikill), fer kúlan á sporbraut um jörðina, annars fellur hún til jarðar. Ef hraðin er hins vegar jafn lausnarhaða eða meiri, losnar kúlan frá jörðinni og hverfur út í geiminn, annaðhvort eftir fleygboga- eða breiðbogabraut. Sjá nánari útskýringar hér.

Í Stærðfræðilögmálunum sýnir Newton meðal annars fram á tengslin milli þyngdar-lögmálsins og lögmála Keplers og fjallar um truflanir á brautum reikistjarna og fylgihnatta þeirra vegna þyngdaráhrifa frá öðrum himintunglum en sólinni. Þá gefur hann fyrstu réttu skýringuna á sjávarföllum, útskýrir hvers vegna jörðin er flatari á pólsvæðunum en um miðbaug og leysir gátuna um framsókn vorpunktsins. Um allt þetta og fleira verður fjallað nánar hér á eftir.

Sagan af því, hvernig Newton tókst að móta heildarkenningu um þyngdina, sem nær til allra hluta, hvar sem er í alheimi, hefur verið sögð í fjölda bóka og tímaritsgreina. Getið er um nokkur slík rit í heimildaskrám í þessari færslu, bæði hér að framan og í þessum kafla. Frægust er þó sagan af Newton og eplinu, sem finna má í mörgum mismunandi útgáfum í alþýðuritum víða um heim. Í Eðlisfræði Fischers frá 1852 er frásögnin svona (bls. 24):

Sagan segir, að [Newton] hafi einusinni verið að ganga um gólf í aldingarði nokkrum, og hafi þá dottið epli ofan úr eik einni og komið í höfuð honum. Honum kom þetta ekki á óvart, því hann vissi að það var þýngdin, sem knúði eplið niður á jörðina, en nú datt honum sú spurning í hug, hvort eplið mundi hafa dottið eins fyrir það, þó eikin hefði verið mörgum sinni hærri. Hann efaðist ekki um að svo hefði farið.  -  ”En ef eikin hefði náð upp í túnglið ?”  -  Úr þessari spurningu gat hann ekki leyst, og kom það honum til að gjöra ýmsar athuganir og tilraunir um þetta efni, og ályktun sú, er hann komst að, var undrunarverð. Hann uppgötvaði þá hið mikilvæga lögmál þýngdarinnar, að aðdráttaraflið mínkar eptir fertölum fjarlægðarinnar.

 

„Hypotheses non fingo“

Þeir evrópsku stærðfræðingar og náttúruspekingar, sem á annað borð gátu lesið Stærðfræðilögmál náttúruspekinnar sér að gagni, voru sammála um það, að ritið væri stærðfræðilegt meistaraverk. Hins vegar gagnrýndu ýmsir hinar heimspekilegu undirstöður, sem verkið hvíldi á, meðal annars hugmyndir Newtons um tóm og kraftverkun.

Sem dæmi má nefna, að margir lærdómsmenn upplýsingaraldar, sérstaklega þó á meginlandinu, voru sammála  Aristótelesi um það, að kraftur gæti ekki verkað milli hluta án snertingar af einhverju tagi, annaðhvort beint eða í gegnum einhverskonar vaka (aether). Newton var hins vegar atómhyggjumaður og hin ódeilanlegu atóm hans hreyfðust í tómarúmi. Hreyfingarástand þeira gat að sjálfsögðu breyst við árekstra og þau gátu sameinast vegna samloðunar, en þyngdarkrafturinn milli þeirra byggðist á fjarhrifum og hið sama átti við um aðskilda stóra hluti eins og himintungl. Þetta þótti mönnum eins og Leibniz og Huygens algjörlega ókiljanlegt og mótmæltu hugmyndinni um fjarhrif harðlega, bæði í ræðu og riti.

Vitað er, að Newton gerði ýmsar tilraunir til að finna ásættanlegar leiðir til að losna við fjarhrifin, en án árangurs. Í viðauka eða eftirmála (l. Scholium generale; e. General Scholium), sem hann bætti við aðra útgáfu Stærðfræðilögmálanna árið 1713 (og aftur örlítið breyttan við þriðju útgáfuna 1726) tekur hann svona til orða í áttundu efnisgrein:

Þessi íslenska þýðing Björns Franzsonar birtist árið 1945 í bókinni Undur veraldar (ritstj. H. Shapley, S. Rapport & H. Wright). Sjá einnig  bók Þorsteins Vilhjámssonar, Heimsmynd II, 1987, bls. 247-53.

Rétt fyrir neðan miðju má sjá hina frægu fullyrðingu „tilgátur smíða ég ekki“, sem er þýðing á „hypotheses non fingo“.  Eftirmálinn í heild er sennilega það af verkum Newtons, sem flestir hafa lesið og heimspekingar og sagnfræðingar vísa hvað mest í. Í þessum greinaflokki hefur þegar komið fram, að það var Stefán Björnsson reiknimeistari, sem fyrstur Íslendinga kynnti sér þyngdarfræði Newtons og í einni af dispútíum sínum vitnar hann beint í Scolium generale. Um það verður nánar rætt í næsta kafla.

Í samræmi við þessa yfirlýsingu breytti Newton víðast hvar tilgátum (hypotheses) fyrstu útgáfunnar í reglur (regulae philosophandi) eða fyrirbæri (phaenomena) í seinni útgáfum Stærðfræðilögmálanna. Aðferðafræði hans breyttist þó lítið með nýju nöfnunum.

Þrátt fyrir mikla gagnrýni í fyrstu, hlutu fjarhrifin smám saman samþykki lærdómsmanna á meginlandi Evrópu og þyngdarlögmálið var óspart notað til reikninga á hreyfingum himintungla. Áhyggjur manna af hinum heimspekilega grundvelli fóru og stöðugt minnkandi, ekki síst eftir að hugtakið þyngdarsvið kom til sögunnar.  Almenn umfjöllun um sígilda þyngdarfræði hefur og byggt á þeirri hugmyndafræði alla tíð síðan.

 

Stefán Björnsson - Fyrsti íslenski njútonistinn?

Árið 1758 dispúteraði Stefán Björnsson reiknimeistari einu sinni sem oftar við Hafnarháskóla. Heiti fyrirlestrarins það árið var De Effectu Cometarum Descendentium in Systema Nostrum Planetarium (Um verkan halastjarna sem ganga niður í reikistjörnukerfi vort) og framsetningin sýnir framúrskarandi skilning höfundarins á aflfræði og þyngdarfræði Newtons.

Á þessum tíma var spá E. Halleys um fyrstu endurkomu halastjörnunnar, sem nú er við hann kennd, mikið til umræðu víða um heim, ekki síst vegna þess, að spáin var byggð á þyngdarfræði Newtons (sjá nánar síðar í þessari færslu). Það er því ekki ósennilegt, að sá almenni áhugi hafi ráðið vali Stefáns á umfjöllunarefni.

Fyrsta síðan í dispútatíu Stefáns Björnssonar Um verkan halastjarna, sem ganga niður í reikistjörnukerfi vort frá 1758. Höfundurinn byrjar á því að setja fram þyngdarlögmálið með orðunum „Allir hlutir í heimi dragast gagnkvæmt hver að öðrum og toga gagnkvæmt hver í annan í samsettu hlutfalli, beinu við efnismagn og öfugu við kvaðrat fjarlægðanna milli miðpunkta þeirra.“ Síðan færir hann rök fyrir því, að halastjörnur séu himintungl og lúti því þyngdarlögmálinu.

Dispútatían, sem öll er byggð á náttúruspeki og heimsmynd Newtons, fjallar ítarlega um þyngdarlögmálið og lýsir því í nokkrum smáatriðum, hvernig halastjörnur hreyfast vegna þyngdarhrifa sólarinnar. Jafnframt ræðir Stefán truflandi áhrif halastjarna á hreyfingu sólar og reikistjarna og einnig um sjávarföll af þeirra völdum sem og ýmislegt annað áhugavert. Rétt er að geta þess, að Stefán nefnir það oftar en einu sinni, að þyngdarhrif halastjarnanna séu reyndar mjög lítil og sennilega ómælanleg. Einnig má nefna, að í 6. grein dispútatíunnar setur hann fram markhyggjurök fyrir tilviljankenndri dreifingu halastjörnubrauta og vísar þar beint í 3. efnisgreinina í eftirmála (Scolium generale) Stærðfræðilögmála náttúruspekinnar.

Eftir þessa lýsingu, kynnu lesendur að halda, að Stefán hafi verið gallharður njútonisti. Svo virðist þó ekki hafa verið, því þótt hann sé sáttur við þyngdarlögmálið og notkun þess, samþykkir hann ekki fjarhrif að hætti Newtons. Það viðhorf kemur fram í nýrri dispútíu hans árið 1759, sem ber hið sérkennilega heiti, De usu astronomiæ in medicina cujus præliminaria de influxu corporum cælestium systemmatis nostri solaris in tellurem nostram mediante illuminaria et magnetica (Um gagnsemi stjörnufræði í læknislist: Inngangur um áhrif himinhnatta sólkerfis vors á jörð vora með ljósafli og segulafli).

Í dispútíunni afneitar Stefán fjarhrifum strax í upphafi og segir:

Af því leiðir að óravíddir himins í öllu sólkerfi voru, allt frá yfirborði sólar vorrar, ekki aðeins út fyrir Satúrnus, heldur einnig fjarlægustu halastjörnur, eru gagnteknar og fylltar einhverju afar fíngerðu efni, og með þeim miðli hafa allir hlutir í kerfi voru gagnkvæm áhrif hver á annan. Þetta efni nefnist almennt vaki og er skipt niður í önnur fleiri, t.d.  ljósvaka, og [...] aðdráttarvaka, og aðrir bæta við þyngdarvaka og varmavaka.

Síðan bætir hann við:

En hvort víddir himins séu þéttfylltar vaka með hreint engu tómarúmi, eða fyrir komi í víðáttunni eitthvert tóm á víð og dreif, og hingað og þangað séu dreifðar gloppur gjörsamlega án vaka, er atriði sem hér verður látið liggja á milli hluta. Fylgismenn Newtons verja kenninguna um tóm, og henni til stuðnings færir hinn virti Gravesande afar knýjandi rök í 12. kafla 6. bókar ritsins [Physices elementa mathematica: sive introductio ad philosophiam Newtonianam]. Leibniz og fylgismenn hans verja kenninguna um efnisfyllingu.

Í framhaldinu fjallar Stefán svo í talsvert löngu máli um eiginleika sólarljóssins og áhrif þess á jörðina og íbúa hennar. Í því sambandi vitnar hann meðal annars í Ljósfræði Newtons, Efnafræði eftir H. Boerhaave og ýmis fleiri rit.

 

Þyngdin í fyrstu íslensku fræðsluritunum

Eins og áður hefur verið minnst á, varð þyngdarfræði Newtons fyrst hluti af námsefni Hafnarháskóla eftir að Thomas Bugge varð prófessor í stjörnufræði árið 1777. Þótt ítarlega sé um hana fjallað í kennslubók hans frá 1796 (sjá umfjöllunina frá og með bls. 128) er ekki ljóst, hversu nákvæmlega hann fór í efnið í kennslunni. Hins vegar er vitað um ýmsa stúdenta og lærdómsmenn í Danaveldi, til dæmis Stefán Björnsson, sem kynntu sér  þyngdarfræðina á eigin spýtur, áður en Bugge varð prófessor.

Hér heima, birtist fyrsta alþýðlega umfjöllunin um þyngdina í Náttúruhistoríu Büschings árið 1782 (bls. 240):

Hvar sem men standa á jardarhnettinum, finiz þat ætid vera á þeim hlutanum, sem upp snýr, en skilja eigi, at fólk megi standa undir jördunni ser andspænis; því svo þykir, sem höfudin hángi, og mundi skiótt detta nidr; en því er eigi svo varit, helldr er jördin lík stórri segulsteinskúlu; þá henni er vellt í járnsvarfi, þá dregr hún þat til sín, svo kornin hánga vid hana, bædi at ofan og nedanverdu; á sama hátt dregr og jördin alla hluti til sín, sem um hana eru. Hvar sem madr er staddr, hefir hann himininn yfir höfdi, og jördina undir fótum ser; ber þessi jardarinnar sköpun liósliga vitni um Guds vísdóm; því þessvegna kunna men bædi at ferdaz í kríngum hana alla, sem tídum hefir giört verit, og giöriz, en tækiz ómöguliga, ef hún eigi væri hnöttótt; og þar med kann jördin siálf því audvelldar at snúaz svo sem á þolinmódi, og gánga umhverfis sólina.

Þótt í lok tilvitnunarinnar komi skýrt fram, að Büsching sé sáttur við sólmiðjukenninguna og þekki til möndulsnúnings jarðar, er umfjöllun hans um þyngdina frekar forneskjuleg. Auk þess er ekki minnst á það í bókinni, að þyngdin ríki líka á öðrum hnöttum og milli himintungla.

Svipaða, en gagnlegri umfjöllun, er að finna hjá Magnúsi Stephensen í Alstirnda himninum frá 1797 (bls. 34-35). Til viðbótar hefur Magnúsi eðlilega þótt mikilvægt að sannfæra landsmenn um hnattlögun jarðarinnar (bls. 36-38) og notar til þess röksemdafærslu, sem hafði verið vel þekkt í Evrópu frá því á dögum Forn-Grikkja. Henni er reyndar enn beitt í alþýðlegum fræðsluritum og kennslubókum fyrir byrjendur.

Síða úr kennslubók Sacroboscos, De Spheara (Um kúluna), frá 1550. Þarna er, með hjálp skýringarmynda,  fjallað um rökin fyrir hnattlögun jarðar. Efst til vinstri má sjá menn á mismunandi stöðum á yfirborði jarðkúlunnar. Strikin, sem tengja þá við stjörnur á  himinkúlunni, sýna að þeir sjá ekki allir sömu stjörnurnar. Í efra horninu til hægri má sjá tunglmyrkva. Af bogadregnum skugga jarðar á tunglyfir-borðinu má álykta að jörðin sé kúla. Neðst er svo sýnt, hvernig sjá má hnattlögun jarðar með því að fylgjast með hvarfi skips, sem siglir yfir sjóndeildarhringinn. -  Svipaða umfjöllun frá 13. öld er að finna í Rímbeglu-útgáfu Stefáns Björnssonar frá 1780 (IV. partur, §51-53, bls. 466-468. - Sjá einnig í Alfræði íslenzkri II, bls. 104-105).

Fjórtán árum áður en Alstirni himinninn kom út, fjallaði Magnús stuttlega um þyngarkraftinn í ritgerðinni Um meteora, þá nýbúinn að læra náttúruspeki hjá Kratzenstein og stjörnufræði hjá Bugge. Þar segir hann á bls. 154:

Allir himinknettir hafa, nockurskonar dráttarkrapt (vim attractivam), ecki ólíkt segulsteininum, þat er: ad draga hverr annann til sín, edr eins og Náttúruspekingar segia: þýngia hvörr á móti ödrum, þat er: sýna vidleitni til at falla hvörr á annann, af eiginn þúnga sínum, eins og til dæmis steinn, sem kastat er í lopt upp, sækir ódum nidr til jardar.

Á þenna hátt þýngir jördin á móti sólu og túngli, og sól og túngl aptr í móti jördunni; en þar sólin er hartnær 500 sinnum lengra burt frá jördunni, enn túnglit, þá er einninn þýngíng (gravitatio) hennar í móti jördunni lángtum minni en túnglsins; þó má hverki sól ne túngl hamla, edur kippa henna til muna út af gángveg sínum, en flódi og fiöru meiga þau til leidar koma.

Að því ég best veit, er þetta fyrsta tilraun íslensks höfundar til að útskýra þyngdarhugtak Newtons fyrir löndum sínum á móðurmálinu.  Þetta var árið 1783, 96 árum eftir að Stærðfræðilögmál náttúruspekinnar komu út. Newton er þó hvergi nefndur, hvorki hér, né í greinum Magnúsar um stjörnufræði árið 1797. Þar minnist hann þó á nokkra þekkta stjarnvísindamenn, sem uppi voru eftir daga Newtons.

Magnús Stephensen, Fyrsti Íslendingurinn, sem gerði tilraun til að útskýra þyngdina fyrir almenningi á Íslandi. -  Teikning eftir málverki C. A. Jensen frá 1826.

Nafn Newtons kemur fyrst fyrir í íslensku alþýðuriti í neðanmálsgrein  Jóns lærða Jónssonar í Náttúruskoðara Suhms árið 1798. Þar segir hann um hnattlögun jarðar á bls. 7-8 og vísar bæði í Astro- et physico-Theologie eftir W. Derham og fyrsta hlutann af Naturlehre eftir J. G. Krüger:

Ad jördin hnöttótt er, heldur enn í annari mind, leidir Newton þá orsök til, ad allir partar jardar sækja ad hennar midpúnkti, og ad þessi dráttar-kraptur sé í öllum hlutum, sjáum vjer medal annars af vatns- og regn-dropunum, sem ávalt hnöttóttir eru medan þeir falla ígegnum loptid, hvörri mind þeir halda eins í lopt-tómu rúmi sem ella, er vottar, ad þryckíngar kraptur loptsins ollir því ecki einskostar. En hinu, ad jördin er þó ecki rett hnöttótt, heldur flatari undir heims-endunum, enn bruna-beltinu, því veldur, nærst hita sólarinnar, hennar daglegi snúningur, sem verkar þad, ad partar hennar vilja losna og hristast í sundur framar um midbik hennar, enn undir skautunum og  reikna því meistarar að jördin se fimm mílum lægri undir þeim enn brunabeltinu.

Í síðustu færslu var getið um  tilraun Jóns í Náttúruskoðara til að útskýra þyngdarkraftinn, með því að notast við ellefu ára gamla bók  Bastholms, Philosophie for Ulærde. Í einni af neðanmálsgreinum sínum segir Jón (bls. 96-97):

Hvad því valdi ad sólin dregur pláneturnar í kríng um sig, er ad sönnu torsótt ad skilja, þó færir Basthólm þessa samlíkingu þar til: steinn í slöngu einni leitast á allar siddur ad fljúga út frá hendi manns, sem er hans midpúnktur. Þannig fylgir og plánetunum nockurskonar kraptur, ad flýja út frá sínum midpúnkti, sem er sólin. En þar er þá annar gagnstædur kraptur, sem heldur þeim aptur; og hvörr er hann? allir líkamir hafa einskonar krapt þann í ser ad draga hvörn annann til sín, t.d. þegar tveir dropar vatns snerta hvörr annann, hlaupa þeir saman í einn dropa. Tveir hnettir í sama vatni, draga hvörr annann til sín, seu þeir ecki oflángt hvörr frá ödrum. Þetta rís þó af vatninu, sem er í millum hnattanna, því annadhvört hljóta líkamirnir ad snerta hvörr annann fyrir medal eda medalslaust, skuli þeir hvörr annann til sín draga. Á þann hátt dregur hnötturinn þad næsta vatn til sín, þetta vatn aptur þad nærsta vatn ser, og s. fr. Þannig sýnist því varid um þá himnesku líkami. Þar er til, sem sagt er [í 3. neðanmálsgrein, bls. 11] rennandi ætheriskt efni, í hvörju sólin og allar hennar plánetur sveima. Sólin dregur þetta efni til sín, og þad aptur pláneturnar. Þegar þessi kraptur er jafnstór þeim kraptinum, sem drífa vill pláneturnar út frá sínum midpúnkti, hljóta þær vafalaust ad fljúga í kríngum sólina, eins og steinninn í slaungunni um kríng höndina.

Þarna er blandað saman hugmyndafræði Descartes og Newtons á dálítið skondinn og ruglandi hátt.  Slíkt mun víst hafa verið algengt í alþýðuritum á átjándu öld og eldurspegl-ar án efa, hversu erfitt það var á sínum tíma að ná tökum á kenningum Newtons um aflfræði og þyngd. Eins og sjá má hjá Jóni lærða, gripu höfundar eðlilega oft til þess ráðs að tala um miðflótta- og miðsóknarkrafta til að auðvelda skilning. Annað dæmi um slíkt er að finna í Almennri landaskipunarfrædi (bls. 13):

Ad manneskiur og adrir hlutir á hnettinum ecki hvirflast út í buskan, kémur af því, ad allir hlutir leita nidur ad midpúnkti jardar, og þessi addráttarkraptur jardar (vis centripetalis) yfirgeingur miög framfararflugid (flegis edur slaungukraptinn vis centrifuga) sem snúningurinn kémur til leidar þegar eckert hindrar, og sem mundi færa hlutina út í loptid first nærri jördunni, og sídan meira og meira út frá hveli hennar eptir beinni svokalladri snertilínu (tangent). [Neðanmáls:] Þessi ódfluga snúningr (fráflugskraptr) veldur því ad jördin er ekki öldúngis hnöttótt, heldur einúngis hnattarlík, og digrari um midbikid.

Um þetta má segja, að höfundum alþýðuurita á árunum um og uppúr 1800 tekst misvel upp, hvað útskýringar varðar. Það mætti jafnvel spyrja, hvort umfjöllunin hafi yfirleitt komið lesendum að gagni, eða bara ruglað þá enn frekar í ríminu.

Næst á eftir Stefáni Björnssyni er það Björn Gunnlaugsson, sem fyrstur Íslendinga öðlaðist fullan skilning á þyngdarfræði Newtons. Því miður liggur lítið eftir hann um efnið á prenti, en augljóst er af þeim verkum, sem hann þó birti, að hann hefur kunnað að beita þyngdarlögmálinu við útreikninga (sjá nánar hér á eftir og færsluna um halastjörnuna 1858 - Ýmsa aðra reikninga Björns í þyngdarfræði má finna í handritum).

Það kom því í hlut nemanda Björns, Jónasar Hallgrímssonar, að færa íslenskum almenningi fyrstu nákvæmu upplýsingarnar um þyngdarfræði Newtons. Segja má, að með þýðingum sínum og ritgerðum hafi hann tekið við keflinu af Magnúsi Stephensen, sem mikilvægasti alþýðufræðari Íslendinga um raunvísindaleg efni á fyrri hluta átjándu aldar.

Jónas fjallar í fyrsta sinn um þyngdina innan um annað efni í ritgerðinni Um eðli og uppruna jarðarinnar árið 1835. Um guð, náttúrulögmál og þyngd hefur hann þetta að segja (bls. 111):

Hvað öblum náttúrunnar og eýlífa lögmáli viðvíkur, þá sjá menn einnig við nákvæmari íhugun, að þau reyndar eru in endanlega mind, er oss auðnast að sjá vilja guðs og hina eýlífu skynsemi í; enn hjá sjálfum guði er eingin umbreýting né umbreitíngarskuggi, so guðrækileg skoðun hlutanna hlýtur, ekki síður enn heimspekilegar ransóknir, að leiða menn á þá sannfæríngu, að lögmál náttúrunnar se eýlíft og óumbreytanlegt. Því fer so fjærri að almætti guðs og frjálsu vizku sé neitað fyrir það, að einmitt af því inn frjálsi guð er fullkominn og ótakmarkaður, hljóta hans gjörðir fyrir vorum augum að líta út sem eýlíf og obifanleg lög, er allir hlutir verði að hlýða, Tökum til dæmis þýngdina. Í fyrstunni kemur hún oss fyrir sjónir einsog almennt lögmál fyrir hlutina hér á jörðu; við nákvæmari ígrundun sjá menn, að hún er aðdráttar kraftur allra skapaðra hluta sín á milli; ennfremur, að hún er sá ablfjötur, sem tengir saman alheiminn, og loksins birtist hún oss sem sá guðlegur vilji, er viðheldur hnattakerfum heimsins í sínu fagra og undrunarverða sambandi. Hér höfum við hafið oss smátt og smátt frá einni skoðun til annarar háleitari, og komum þar einsog annarstaðar til þeírrar áliktunar, að upphaf allra hluta sé guð.

Nokkrum síðum aftar lýsir Jónas í nokkrum smáatriðum hinni svokölluðu Kant-Laplace kenningu um myndun sólkerfisins, þar sem þyngdaraflið kemur mjög við sögu (kenningin verður nánar rædd í næstu færslu).

Þegar tilvitnunin hér fyrir ofan er lesin, fer ekki hjá því, að hægt sé að sjá ákveðna samlíkingu við hugmyndir Newtons og ýmissa annarra lærdómsmanna um guð og sköpunarverkið. Í því sambandi má nefna, að víða er því haldið fram, að hinn trúaði Newton hafi innleitt hugmyndina um sólkerfið sem hina fullkomnu klukku eða sigurverk skaparans. Þetta er sannanlega rangt, því fullyrðinguna má rekja til Descartes. Newton áttaði sig hins vegar fljótlega á því, að himintunglin hafa þyngdaráhrif hvert á annað og við það geta  brautir þeirra truflast. Hann taldi því, að ef í óefni stefndi, myndi guð grípa í taumana, leiðrétta hreyfinguna og halda sólkerfinu stöðugu.

Leibniz, einn helsti gagnrýnandi Newtons, var á öðru máli. Í sínu fyrsta bréfi í hinum þekktu bréfaskiptum við S. Clarke segir hann meðal annars, að Newton og fylgismenn hans hafi hinar furðulegustu hugmyndir um verk guðs. Þeir telji, að guð þurfi að trekkja upp klukku sína öðru hverju til að koma í veg fyrir að hún stoppi.  Hann hafi sem sagt ekki verið nægjanlega framsýnn til að skapa hana sem eilífðarvél, nokkuð sem Leibniz taldi óhjákvæmilegt í hinum besta heimi allra hugsanlegra heima.

Stuttlega verður fjallað um stöðugleika sólkerfisins síðar í færslunni.

Vísindamaðurinn og skáldið Jónas Hallgrímsson. Teikning frá 1845.

Þýðing og endursögn Jónasar Hallgrímssonar á ritinu Populært Foredrag over Astronomien eftir G. F. Ursin kom út undir nafninu Stjörnufræði árið 1842. Hún var fyrsta bókin á íslensku, sem algjörlega var helguð þeirri vísindagrein.  Danska frumútgáfan var meðal bestu alþýðurita, sem út komu í Danmörku á fyrri hluta átjándu aldar, og hið sama á við hér á landi um snilldarþýðingu Jónasar. Bókin er kannski ekki mikið lesin í dag, en við notum enn fjöldann allan af nýyrðum, sem fyrst litu dagsins ljós í þýðingunni.

Bók Ursins er almennt og vandað yfirlit yfir sjörnufræði síns tíma, en hér munum við fyrst og fremst beina athyglinni að umfjölluninni um þyngdina. Hún hefst í sjöundu grein bókarinnar (bls. 87-100) með stuttum inngangi um hreyfifræði hluta að hætti Newtons.  Síðan er rætt um slaunguleiðina, það er hinn bogna veg (fleygboga), sem líkamir er slöngvað er, fara við yfirborð jarðar. Þá er fjallað  um hringhreyfingu og miðflóttakraft og jafnframt um miðsóknarkraftinn, það er aðdráttarkraftinn eða þyngdina.

Þyngdarlögmál Newtons er tekið fyrir án allrar stærðfræði á bls. 95-96, og mun það vera í fyrsta sinn, sem það er sett fram á íslensku.

Í áttundu greininni (bls. 100-114) er fjallað um það hvernig þyngdarlögmálið er notað til að útskýra ýmis fyrirbæri í sólkerfinu, til dæmis brautir himintungla.

Mynd, sem fylgir umfjölluninni í Stjörnufræði Ursins  um brautir hnatta í sólkerfinu (bls. 101-105). - Hér er S miðhnöttur. Ef fylgihnöttur í P hreyfist með ákveðnum hraða, Pm, hornrétt á stefnuna til S, fer hann eftir hringbraut með S í miðju. Sé hraðinn PM > Pm, en samt ekki of mikill (PM < √2 Pm), verður brautin sporbaugur með S í þeim brennipunkti, sem er nær P. Firðin er í A og nándin í P (þetta er sýnt á myndinni). Ef PM < Pm verður brautin sporbaugur innan í hringnum með S í þeim brennipunkti, sem er fjær P og P verður nú firðarpunktur.  Ef PM = √2 Pm er brautin fleygbogi, en breiðbogi ef PM > √2 Pm.  -  Í sólkerfinu hreyfast reikistjörnurnar eftir sporbaugum um sólina og sömuleiðis tunglin um reikistjörnur-nar. Þær halastjörnur, sem  ekki eru á ílöngum sporbaugum um sól, hreyfast ýmist eftir fleygbogum sða breiðbogum.

Á bls.105-106 segir Ursin frá því, að þyngdarlögmálið gildi óbreytt um um „réttmyndaða hnetti“, ef gert er ráð fyrir, að allt efni þeirra sé samankomið í miðpunktunum. Þá fer hann nokkrum orðum um þriggja-hnatta vandamálið og truflanareikning almennt, sýnir hvernig ákvarða má massa reikistjarna, fjallar um sjávarföll og áhrif möndulsnúnings á  lögun jarðar. Öll þessi atriði verða tekin betur fyrir síðar í færslunni.

Segja má, að með Stjörnufræði Ursins hafi öllum Íslendingum verið tryggður aðgangur að tiltölulega aðgengilegri fræðslu um stjarnvísindi, þar á meðal þyngdarfræði Newtons. Frá og með 1846 gátu skólapiltar í Reykjavíkurskóla einnig  lesið sér til um  þyngdina í kennslubókinni Naturlærens mechaniske Deel eftir H. C. Örsted (bls. 165-220) og Björn Gunnlaugsson hefur án efa fjallað um þyngdarfræðina í stjörnufræðitímum.

 

Sjávarföll

Tilvitnunin hér að framan í viðauka Stærðfræðilögmála náttúruspekinnar hefst á orðunum „Til þessa höfum við beitt þyngdarkraftinum til skýringar á fyrirbærum himinsins og hafsins, án þess að nokkur skoðun hafi verið látin uppi ennþá um orsök  þessa krafts.“ Þarna er Newton  greinilega að vísa til þess, sem hann sjálfur taldi merkustu niðurstöður þyngdarfræði sinnar, nefnilega útskýringarnar á hreyfingum himintungla annars vegar, og orsökum flóðs og fjöru hins vegar.

Frá upphafi vega hafa sjómenn og aðrir þeir sem við strendur búa, fylgst náið með flóði og fjöru og velt vöngum yfir orsökum þeirra. Íslendingar eru þar engin undanteking, eins og sjá má á íslenskum miðaldahandritum frá 13. öld, sem meðal annars fjalla um göngu tungls og sólar og sjávarföll. Sjá til dæmis Rímbeglu-útgáfu Stefáns Björnssonar (IV. partur, §10-31, bls. 438-452 og §67-68, bls. 478) og sömu greinar í Alfræði íslenzkri II.

Árið 1783 fjallaði Magnús Stephensen all ítarlega um flóð og fjöru í hinni miklu grein sinni Um meteora (§18, bls. 154-158) og vitnar meðal annars í ritgerðina Theoriam Cursus Oceani eftir fyrrum kennara sinn, C. G. Kratzenstein. Án þess að nefna Newton á nafn, greinir hann frá því, að sjávarföll stafi af þyngdarkröftum túngls og sólar, fjallar um stórstreymi og smástreymi og ræðir almennt um hegðun sjávarfalla víða um heim.

Þrátt fyrir gagnlegar lýsingar, er ljóst, að Magnús hefur ekki fullan skilning á þyngdarfræði Newtons og útskýringar hans á þyngdaráhrifum eru ófullnægjandi, að minnsta kosti séð frá sjónarhóli nútímans.  Þetta kemur þó ekki á óvart, því sjávarfallafræði er ekki eins auðveld viðureignar og sumir kunna að halda. Aðra gagnlega, en jafnframt ófullkomna umfjöllun um efnið, er að finna í Almennri landaskipunarfrædi frá 1821 (§40, bls. 143-148). Þar, eins og hjá Magnúsi, gætir nokkurs misskilnings um það, hvernig þyngdaflið veldur sjávarföllum.

Það er fyrst með Stjörnufrædi Ursins, árið 1842, sem íslenskir lesendur fá nokkurn veginn fullnægjandi lýsingu á orsökum sjávarfalla (bls. 109-111). Jónasi Hallgrímssyni, hefur þó ekki þótt nóg að gert, því árið eftir birti hann í Fjölni þýðingu sína á greininni Um flóð og fjöru eftir danska alþýðufræðarann C. A. Schumacher. Þótt þar gæti sums staðar misskilnings um áhrif þyngdar og miðflóttakrafta, er umfjöllunin til muna myndrænni en fyrri lýsingar á íslensku. Sjálfur skrifaði Jónas svo síðasta hluta greinarinnar (aftan við þverstrikið á bls. 51), þar sem fjallað er um sjávarföll á Íslandi með aðstoð flóðatöflu.

Fyrsta skýringarmyndin af þremur í greininni Um flóð og fjöru frá 1843. Með teikningunni hægra megin og meðfylgjadi texta í greininni, er gerð tilraun til að útskýra þátt tunglsins í sjávarföllum á jörðinni. Tunglið er statt á staðnum L' og miðja jarðar er í C'. Lögun vökvahjúpsins (heimshafanna) N'm'Z'n', sem umlykur fasta jörðina, stafar af þyngdarkrafti tunglsins, enda er það „lögmál þíngdarinnar, að aðdráttaraflið mínkar eptir sama hlutfalli og fjarlægð hlutanna eikst margfölduð með sjálfri sjer.“ Útlistun á sjávarfallahrifum sólar fylgir svo í kjölfarið.

 

Lögun jarðar, hreyfing og pólvelta

Það voru ekki aðeins fjarhrifin og eðli þyngdarkrafts Newtons, sem í fyrstu vöfðust fyrir mörgum upplýsingarmönnum á meginlandi Evrópu. Sérstaklega áttu franskir fylgismenn Descartes erfitt með að skilja þá röksemdafærslu Newtons, að möndulsnúningur jarðar ásamt áhrifum þyngdarinnar gerðu það að verkum, að jörðin væri heldur flatari á pólunum en við miðbaug. Þó hafði Huygens áður notað kartesískar hugmyndir um miðflóttaaflið til að setja fram svipaða hugmynd og Newton.

Sú niðurstaða Newtons, að jörðin væri í laginu eins og flattur sporvölusnúður (e. oblate spheroid) var því harðlega gagnrýnd í Frakklandi, enda höfðu mælingar og útreikningar Cassini feðganna áður bent til þess, að jörðin líktist frekar ílöngum sporvölusnúð (e. prolate spheroid), lögun, sem var í samræmi við hvirflakenningu Descartes.

Í Stjörnufræði Ursins er útskýrt (bls. 113-114), hvernig þyngdar-aflið og möndulsnúningur reikistjarnanna veldur því, að „þær eru flatvagsnar, rétt eins og hnoða undir léttu fargi, flatastar um möndulendana, eður skautin og hæstar um miðbikið“. Á mynd Ursins er þversnið hnattarins EFGD borið saman við kúluna PQpA með sameiginlega miðju í C. Snúningsásinn er Pp.  -  Hlutfallið (DC-EC)/DC er mælikvarði á frávikið frá hnattlögun.  Samkvæmt Ursin er það aðeins 1/300 fyrir jörðina, sem er ekki fjarri réttu lagi.  Miðbaugsbungan er því greinilega mjög ýkt á myndinni.

Deilurnar milli kartesista og njútonista um rétta lögun jarðar urðu að lokum svo háværar, að Franska vísindaakademían ákvað að senda út tvo leiðangra til að ganga endanlega úr skugga um lögunina. Annar leiðangurinn var sendur til miðbaugssvæðis í Perú í Suður-Ameríku (sem nú kallast Ekvador) en hinn norður til Lapplands. Verkefnið var að beita þríhyrningamælingum til að finna lengd einnar breiddargráðu á hvorum stað fyrir sig og bera niðurstöðurnar saman.

Perú-leiðangurinn lagði af stað árið 1735 og í honum voru þekktir  vísindamenn, eins og P. Bouguer, C. M. La Condamine og L. Godin. Árið eftir hófst svo Lapplandsförin, þar sem njútonistarnir P. L. Maupertuis og A. Clairaut voru meðal leiðangursmanna. Á leiðinni norður bættist Svíinn A. Celcius í hópinn. Norðurfararnir sneru aftur til Parísar 1738, en miðbaugsmenn ekki fyrr en sex árum síðar. Eftir umfangsmikla reikninga kom í ljós, að breiddargráðan við miðbaug var styttri en sú í Lapplandi í fullu samræmi við kenningu Newtons.

Þótt sumir efuðust um nákvæmni mælingnna, voru langflestir sáttir við niðurstöðuna, sem varð aftur til þess, að eftir miðja átjándu öld var kenningu Newtons um lögunina hampað í svo til öllum vestrænum kennslubókum í stjörnufræði, sem á annað borð fjölluðu um efnið. Þetta má til dæmis sjá í kennslubók C. Horrebows frá 1762 (bls. 292-304) og kennslubók T. Bugge frá 1796 (bls. 282-292).

Í íslensku fræðsluritunum frá árunum í kringum 1800 er þegar farið að fjalla um mynd Newtons af jörðinni sem sjálfsagðan hlut og ekki minnst á hinar hatrömmu deilur um lögunina, sem tröllriðu Mið-Evrópu á fyrri hluta átjándu aldar. Það eitt er greinilegt merki þess, að hugmyndafræði Newtons var þegar farin að ryðja sér til rúms á Íslandi, jafnvel meðal þeirra höfunda, sem lítið skildu í stærðfræðilegum útreikningum meistarans eða fylgismanna hans. Sem dæmi má nefna umfjöllun Jóns lærða í Náttúruskoðara frá 1798 (bls. 7-8):

Ad jördin hnöttótt er, heldur enn í annari mind, leidir Newton þá örsök til, ad allir partar jardar sækja ad hennar midpúnkti, og ad þessi dráttar-kraptur sé í öllum hlutum [...]  En hinu, ad jördin er þó ecki rett hnöttótt, heldur flatari undir heims-endunum, enn bruna-beltinu, því veldur, nærst hita sólarinnar, hennar daglegi snúningur, sem verkar þad, ad partar hennar vilja losna og hristast í sundur framar um midbik hennar, enn undir skautunum.

Annað dæmi er í Almennri landaskipunarfræði frá 1821, en þar segir á bls. 13:

Ad manneskiur og adrir hlutir á hnettinum ecki hvirflast út í buskan, kémur af því, ad allir hlutir leita nidur ad midpúnkti jardar, og þessi addráttarkraptur jardar (vis centripetalis) yfirgeingur miög framfararflugid (flegis edur slaungukraptinn vis centrifuga) sem snúningurinn kémur til leidar þegar eckert hindrar, og sem mundi færa hlutina út í loptid first nærri jördunni, og sídan meira og meira út frá hveli hennar eptir beinni svokalladri snertilínu (tangent). Neðanmáls: Þessi ódfluga snúningr (fráflugskraptr) veldur því ad jördin er ekki öldúngis hnöttótt, heldur einúngis hnattarlík, og digrari um midbikid.

Í myndatextanum hér að ofan kom fram, að ítarlega útskýringu á lögun jarðar er að finna í Stjörnufræði Ursins (bls. 113-114). Aftar í bókinni (bls. 172-175) er svo fjallað um ýmsar mælingar, sem styðja kenninguna. Þar er stuttlega minnst á niðurstöður La Condamine og samferðamanna hans í Ekvador, en í stað þess að geta um hinar frægu Lapplandsmælingar þeirra Maupertuis, Clairauts og Celsíusar, nefnir höfundurinn tilsvarandi og nýlegri niðurstöðu samtímamanns síns, J. Svanbergs.

Ekki er oft á það minnst í íslenskum fræðsluritum, að í Stærðfræðilögmálunum tókst Newton, fyrstum manna, að útskýra svokallaða framsókn jafndægrapunkta, sem valdið hafði stjörnufræðingum miklum heilabrotum öldum saman. Þar notaðist meistarinn við upplýsingar um möndulhalla jarðarinnar og áhrif þyngdarkrafta tungls og sólar á miðbaugsbunguna til að sýna fram á pólveltu jarðarinnar og þar með framsóknina (sjá nánar í texta við næstu tvær myndir). Ástæðan fyrir því, að þessu er venjulega sleppt í alþýðufræðslu, er sennilega sú, að erfitt er að fást við viðfangsefnið án umtalsverðrar þekkingar í aflfræði. Jafnvel Ursin sleppir því að fjalla fræðilega um efnið.

Þessi skemmtilega mynd er úr Paísarútgáfunni af De Spheara eftir Sacrobosco frá 1507. Hún sýnir svokallaðan baugahnött, einfalt líkan af hvelfingunni með hringjum, sem samsvara landfræðilegum baugum jarðkúlunnar (í miðjunni). Möndull himins, am, er lóðréttur á myndinni og liggur hornrétt á miðbaug himins, fg. Sólbaugurinn, pq, er umlukinn belti dýrahringsins með hinum fornu táknum fyrir stjörnumerkin tólf. Á þeirri hlið, sem fram snýr, sker sólbaugurinn miðbaug í vorpunktinum, Hann er þarna sýndur í Hrútsmerki  (♈︎), og hornið milli bauganna er nú um 23,5 gráður. Vegna framsóknar skurðpunktsins „niður eftir“ sólbaug er vorpunkturinn nú í Fiskamerki (♓︎) og stefnir í átt að Vatnsberanum (♒︎). Það tekur hann um 26 þúsund ár að fara allan hringinn.

Möndulhalli jarðar og gangur hennar um sólu (S) er orsök árstíðanna. Hallinn er nú um 23,5 gráður miðað við lóðlínu á jarðbrautarsléttuna. Þyngdaráhrif tungls og sólar á miðbaugs-bungu jarðar valda því, að möndullinn veltur um lóðlínuna og fer einn hring á um það bil 26 þúsund árum. Myndin er úr bók J. Fergusons, An Easy Introduction to Astronomy, for Young Gentlemen and Ladies, frá 1769. Svipðuð teikning hafði áður birst árið 1756 í verkinu Astronomy Explained Upon Sir Isaac Newton's Principles, and Made Easy to Those who Have Not Studied Mathematics eftir sama höfund.

Þegar betur var að gáð, leyndust villur í útleiðslu Newtons á pólveltunni. Það kom því í hlut þeirra J. R. d'Alemberts og L. Eulers að lagfæra framsetninguna og útskýra í leiðinni hina svokölluðu pólriðu, sem hinn merki stjörnufræðingur J. Bradley uppgötvaði á árunum 1728-1748.

Bradley er þó líklega þekktari fyrir að hafa áður (á árunum 1725-1728) uppgötvað ljósvilluna, fyrirbæri sem stafar af endanlegum hraða ljóssins og hreyfingu jarðar miðað við fastastjörnurnar. Þessa mikilvægu uppgötvun verður að telja fyrstu beinu sönnunina á göngu jarðar um sólu. Um hana og ýmislegt annað, sem hér hefur verið rætt, er stuttlega fjallað í kaflanum um hreyfingu jarðainnar í Almenni landaskipunarfrædi (§14, bls. 55-61) og sömuleiðis hjá Ursin (bls. 148-152).

Samhengisins vegna, er í lokin rétt að nefna það hér, að þrátt fyrir mikla leit, allt frá dögum Kóperníkusar, var það var ekki fyrr en árið 1838, sem stjörnufræðingar fundu fyrsta dæmið um árlega hliðrun fastastjörnu og gátu þannig ákvarðað fjarlægðina til hennar. Um var að ræða stjörnuna 61 Cygni í 11,4 ljósára fjarlægð. Í vissum skilningi má segja, að sá fundur hafi markað endanlegan sigur sólmiðjukenningarinnar á jarðmiðju-kenningum.

Í Stjörnufræði Ursins er  fjallað um hliðrun á bls. 141-143, en höfundurinn hefur ekki haft tíma til að koma fréttinni um nýju mælinguna í dönsku frumútgáfuna, sem birt var 1838. Þýðandinn virðist ekki heldur hafa vitað af uppgötvuninni, svo hennar er ekki getið í íslensku útgáfunni frá 1842. Í umfjöllun Ursins er þó bent á, að á ritunartíma bókarinnar hafi engin fastastjarna enn mælst með hliðrun. Efri mælingamörk séu um það bil ein bogasekúnda og af því leiði, að lágmarksfjarlægðin til þeirra hljóti að vera meiri en 3 ljósár. Í dag vitum við, að nálægasta þekkta fastastjarnan, Proxíma í Mannfáknum, er í 4,24 ljósára fjarlægð. Nánar verður fjallað um fastastjörnurnar og fjarlægðina til þeirra í næstu færslu(m).

 

Halastjarnan 1759

Eitt þeirra nýmæla, sem Newton birti í Stærðfræðilögmálunum og vakti hvað mesta athygli samtímamanna, var kenningin um það, að halastjörnur væru himintungl og lytu því þyngdarlögmálinu eins og reikistjörnurnar og tungl þeirra (sjá umfjöllunina frá og með lemmu 4 í þriðju bók). Þekktasta myndin í Stærðfræðilögmálunum er einmitt teikning, sem sýnir niðurstöður útreikninga meistarans á fleygbogabraut halastjörnunnar frægu árið 1680.

Teikning Newtons af braut halastjörnunnar 1680 í fleygboganálgun. ABC táknar fleygbogann og D stöðu sólar í brennipunktinum. Boginn GH er hluti af braut jarðar, en flestir hinir bókstafirnir gefa til kynna stöðu halastjörnunnar á mismunandi tímum.

Reikniaðferðin, sem Newton notaði til að finna braut halastjörnunnar 1680, var bæði flókin og tímafrek. E. Halley, sem las próförk af Stærðfræðilögmálunum og aðstoðaði Newton við að búa verkið undir prentun, var í sérstakri aðstöðu til að tileinka sér aðferðina og beita henni á fleiri halastjörnur. Í kringum 1695 var hann farið að gruna, að halastjörnurnar frægu, árin 1531, 1607 og 1682, væru í raun ein og sama stjarnan. Hún væri á sporbaug um sólina og færi eina umferð á um það bil 76 árum.

Það var þó ekki fyrr en 1705, sem Halley birti niðurstöður reikninga sinna á brautum 24 halastjarna í handhægri töflu, og setti jafnframt fram tilgátu þess efnis, að halastjarnan, sem áður hafði sést 1531, 1607 og 1682, myndi birtast á nýjan leik árið 1758.

Hin merka tafla Halleys frá 1705 þar sem sjá má líkindin með halastjörnunum árin 1531, 1607 og 1682. Tölulegar upplýsingar um þessar þrjár stjörnur eru undirstrikaðar með appelsínugulum lit.

Þegar líða fór á sjötta áratug átjándu aldar, var endurkomu stjörnunnar beðið með mikilli eftirvæntingu, ekki aðeins í Englandi heldur um öll Vesturlönd. Eins og áður hefur komið fram, er ástæða til að ætla, að dispútatía Stefáns Björnssonar Um verkan halastjarna frá árinu 1758 hafi verið samin af þessu tilefni.

Spá Halleys var byggð á þeirri tilgátu Newtons, að halastjörnur væru háðar þyngdinni á sama hátt og önnur himintungl. Endurkoman var því mikilvægur prófsteinn fyrir þyngdarlögmálið. Þegar svo stjarna Halleys birtist nokkurn veginn á tilteknum stað og tíma, var henni tekið með miklum fögnuði og atburðurinn talinn mikil sigur fyrir Newton og fylgismenn hans.

Braut Halley-stjörnunnar á hvelfingunni í apríl 1759. Höfundur teikningarinnar er óþekktur.

Nánari umfjöllun um þetta efni og frekari bakgrunn er að finna í fyrstu tveimur greinum undirritaðs um Halastjörnur fyrr og nú:

Þótt Halley-stjarnan hafi ekki sést frá Íslandi vorið 1759, er hennar getið í ýmsum íslenskum alþýðuritum. Til dæmis segir svo í hugvekju Hannesar Finnssonar, Um halastjörnur, frá 1797 (bls. 48-49):

Halastjörnurnar hafa svo vissann, reglubundinn og afmarkaðann gáng, að lærðir menn géta reiknað nær þær komi aftur á sama stað, og þannig hafa þeir reiknað gáng hérum 80 halastjarna, sem sést hafa síðan 837.  Halley, mikill Stjörnuspekingur í Englandi, reiknaði þær manna fyrstur fyrir 100 árum, og þá þegar 24 af þeim. Hann sagði líka fyrir, að halastjarnan sem sást 1682 mundi aftur koma 1759, og munaði einum mánuði í reikningi hans, hvar til Stjörnuspekingar hafa síðan sagt orsökina, svo að raunar skeikaði ecki reikningur hans í hinu allra minsta.

Þarna hefur Hannes sett ártalið 1759 í stað 1758, sem Halley hafði fengið út úr nálgunarreikningum sínum og birt 1705. Í ágætri umfjöllun um endurkomuna og aðdragandann að henni í Stjörnufræði Ursins er fjallað um raunverulegu ástæðuna fyrir þessum mun (bls. 119-120):

Enn hjer var stjörnufræðingunum miklu örðugra fyrir, enn þótt þeir hefðu átt að reikna sjer til brautina eptir athugunum [...] Það var var ekki sólin ein, miðknötturinn, er rjeði ferð halastjörnunnar; jarðirnar allar, er halastjarnan átti að fara framhjá, hlutu að toga í hana, hvur eptir þíngd sinni, og kippa henni nokkuð úr leið og flíta eður seinka komu hennar í sólnánd, eptir kríngumstæðunum. Nú var um að gera, að reikna sjer til þessa hrakninga og það gerðu þeir Clairaut og Lalande með tilhjálp lærðrar konu, er hjet Lepaute. [...] Clairaut sagði því firir, að [halastjarnan] mundi ekki koma í sólnánd firr enn um vorið 1759, og daginn tók hann til að mundi verða 13. apríl, enn minntist hins samt jafnframt, að þessum reikníngi gjæti skeikað um mánuð [...] Þessi firirsögn kom öll fram. Palizsch sá firstur halastjörnuna á Jóladaginn 1758, og hjerumbil á sama stað og hún átti að vera eptir reikningunum; og nú tóku fleiri við og fóru að athuga hana, og af því mátti sjá, að hún mundi koma í sólnánd 13. Marts 1759.

Í síðustu tilvitnuninni hér að framan nefnir Ursin dæmi um beitingu svokallaðs truflanareiknings eða hrakningareiknings, mikilvægrar nálgunaraðferðar, sem Newton er upphafsmaðurinn að. Rætt verður stuttlega um það efni í næsta kafla, sem jafntframt er sá síðasti í þessari færslu.

 

Aflfræði himintungla - Truflanareikningur

Í Stærðfræðilögmálunum notaði Newton þyngdarlögmálið ásamt hreyfingarlögmálunum til að leysa hið svokallaða tveggja hnatta vandamál. Þar sýndi hann stærðfræðilega fram á, að í einangruðu kerfi tveggja fullkomlega kúlusamhverfra hnatta eru brautir hnattanna keilusnið, ef eini krafturirnn sem þar verkar er gagnkvæmur þyngdarkraftur. Þegar annar hnötturinn er mun massaminni en hinn, má gera þá nálgun, að stærri hnötturinn (t.d. sólin) sé kyrr. Þá sýna lausnirnar, að ef sá minni hreyfist ekki of hratt (t. d. reikistjarna), snýst hann umhverfis miðhnöttinn í samræmi við lögmál Keplers. Ef hraðinn er yfir ákveðnum mörkum (t. d. sumar halastjörnur) er brautin annaðhvort fleygbogi eða breiðbogi.

Newton sýndi einnig fram á, hvernig finna má massa reikistjörnu með tungl, sem hlutfall af massa sólarinnar. Þetta má sjá með því að hugsa sér tveggja hnatta kerfi, þar sem fylgihnöttur með lítinn massa snýst með umferðartíma T um miðhnött með massa M. Brautin er hringlaga með geisla R og hraðinn er v. Setjum miðsóknarhröðunina (a =  v2/R = 4π2R/T2) jafna þyngdarhröðuninni (g = GM/R2). Þá fæst niðurstaðan M =  4π2R3/GT2, sem má annars vegar nota fyrir sól og reikistjörnu og hins vegar fyrir reikistjörnu og tungl hennar. Með því að deila seinni niðurstöðunni í þá fyrri, fæst hlutfallið milli massa sólar (M) og massa reikistjörnunnar (m). - Þessu lýsir Björn Gunnlaugsson svo í hinni ágætu grein Um þýngd reikistjarnanna árið 1849 (bls. 64-65):

Lögmálið fyrir þýngd þeirra pláneta, sem hafa túngl meðferðis, verður framsett í þessum hlutfallajöfnuði eða þriggjaliðareglu:
..................................  M : m = F3 u2 : f3 U2
sem með orðum hljóðar þannig eptir röð. Þýngd sólar (M), móti þýngd plánetunnar med hennar túnglum (m), er sem teningur fjarlægðar plánetunnar frá sólunni (F3), margfaldaður med fermáli umferðartíma túnglsins kringum plánetuna (u2), móti teningi fjarlægðar túnglsins frá plánetunni (f3), margfölduðum med fermáli umferðartíma plánetunnar kringum sólina (U2).

Björn getur þess einnig, að finna megi massa tunglsnauðra reikistjarna „með hrindingum þeirra innbyrðis“ (þ.e. með truflanareikningi). Ursin ræðir og um þetta sama efni og fleira á bls. 108-114 í bók sinni.

Björn Gunnlaugsson, árið 1859. - Teikning eftir Sigurð Guðmundsson.

Það að þekkja massa reikistjarnanna, sem hlutfall af sólarmassa, er í sjálfu sér ágætt, en nákvæmari tölur í venjulegum einingum þurftu að bíða þar til H. Cavendish hafði fundið gildið á þyngdarstuðlinum G með óbeinum hætti. Það tókst honum á árunum 1797-1798 í frægri tilraun, sem síðan er við hann kennd, þótt hún sé í meginatriðum byggð á hugmyndum vinar hans, hins fjölhæfa J. Michells.

Eins og áður hefur komið fram, vissi Newton mæta vel, að jörðin er ekki eins og fullkomin stíf kúla, heldur teygjanlegur hnöttur með snúningi og miðbaugsbungu og tilheyrandi pólveltu. Auk þess verka gagnkvæmir sjávarfallakraftar milli tungls og jarðar, og áhrif frá sólinni eru veruleg, bæði á sjávarföllin og önnur fyrirbæri, þar sem þyngd kemur við sögu. Meistarinn gerði sér einnig fulla grein fyrir því, að þyngdaráfrif sólar eru þess valdandi, að braut tunglsins um jörðina víkur talsvert frá sporbaugslögun.

Newton gerði margar tilraunir til að spá sem nákvæmast fyrir um innbyrðis þyngdaráhrif sólar, tungls og jarðar, það er að finna viðeigandi stærðfræðilega lausn á hinu svonefnda þriggja hnatta vandamáli. Það tókst þó ekki og hann áttaði sig fljótlega á því, að þar þyrfti að innleiða nýja tegund nálgunar, aðferð sem nú gengur undir nafninu truflanareikningur. Þannig tókst honum að finna nálgunarlausnir, en samt ekki nógu nákvæmar. Á endanum lýsti hann því yfir, að leitin að skýringum á hreyfingum tunglsins væri eina verkefnið, sem hefði valdið honum höfuðverkjum.

Það var ekki fyrr en um miðbik átjándu aldar, sem þeim A. Clairaut, L. Euler og J. R. d'Alembert tókst í meginatriðum að leysa vandamálið um hreyfingu tunglsins með því að beita nákvæmari truflanareikningi en Newton hafði gert á sínum tíma. Árangur þeirra byggðist meðal annars á hinni gagnlegu stærðfræðilegu framsetningu Leibniz á örsmæðareikningi og ekki síður á framlagi Eulers til þeirra fræða.

Á seinni hluta átjándu aldar fundu bæði Euler og J. L. Lagrange ýmsar sérstakar lausnir á þriggja hnatta vandamálinu og veltu meðal annars fyrir sér kerfi, þar sem massalítil ögn hreyfist í sameiginlegu þyngdarsviði tveggja stórra hnatta. Þannig uppgötvuðu þeir punktana, sem nú eru eingöngu kenndir við Lagrange og mikið notaðir í stjarneðlisfræði. Sem dæmi má nefna, að fyrstu tveir íslensku stjörnufræðingarnir, þeir Sturla Einarsson og Steinþór Sigurðsson fengust báðir við útreikninga á brautum smástirna í hópi Trójusmástirnanna í punktum L4 og L5 á braut Júpíters umhverfis sólina.

Þriggja hnatta vandamálið er aðeins eitt hinna svokölluðu fjölhnatta vandamála. Tveggja hnatta vandamálið tilheyrir einnig flokknum, en það hefur þá sérstöðu, að til er almenn lausn á lokuðu formi, nokkuð sem ekki er um að ræða, ef hnettirnir eru þrír eða fleiri. Það þýðir, að þá þarf nær undantekningalaust að nota sérstakar nálgunaraðferðir og tölulega reikninga við leit að lausnum.

Í íslenskum fræðsluritum er fjallað um ýmsa þræði þessarar sögu, bæði í Stjörnufræði Ursins (bls. 106-124) og í grein Björns Gunnlaugssonar Um þýngd reikistjarnanna.

Fræðigreinin, sem fjallar um fjölhnatta vandamálið í stjarnvísindum gengur undir nafninu aflfræði himintungla og einn mikilvægasti hluti hennar er truflanareikningur (hnikareikingur, hrakningareikningur). Í stuttu máli má segja, að auk Newtons hafi upphafsmennirnir verið þeir Euler, d'Alembert og Clairaut, en greinin tók fyrst flugið fyrir alvöru með aðkomu þeirra Lagrange og P. S. Laplace. Það var Laplace sem bjó til hugtakið  mécanique céleste (alffræði himintungla) og hið magnaða verk hans Traité de Mécanique Céleste frá árunum 1798 til 1825 var lengi ein helsta heimild þess hers stjörnufræðinga, sem unnu að nákvæmnisútreikningum á brautum himinhnatta á nítjándu öld og langt fram eftir þeirri tuttugustu.

Aflfræði himintungla átti sér blómaskeið á tímabilinu frá því um 1740 fram til 1860 eða svo, þegar hin nýja stjarneðlisfræði tók að skyggja á hana með litrófs- og ljósmælingum, ljósmyndatækni og nýjum hugmyndum um eðli stjarna og samband ljóss, varma og efnis (sjá færslu 3). Greinin tók þó aftur hressilega við sér með tilkomu geimferða, rannsókna á nýjum sviðum rafsegulgeislunnar og stóraukinnar reiknigetu á árunum um og uppúr 1960. Uppgötvun fjölda nýrra fyrirbæra, þar á meðal nifteindastjarna, svarthola og þéttstæðra tvístirna, kallaði á  frekari þróun aflfræðireikninga, og ekki minnkaði áhuginn eftir að menn fundu fyrstu fjarreikistjörnurnar á tíunda áratugnum.  -  Rétt er að nefna, að sá Íslendingur, sem hvað mest kom að rannsóknum í aflfræði himintungla á seinni hluta tuttugustu aldar, var stjarneðlisfræðingurinn Jack G. Hills (Gísli Hlöðver Pálsson).

Ég lýk þessari færslu með stuttri umfjöllun um nokkra áhugaverða þætti úr aflfræði-rannsóknum á sólkerfinu.

Í Stjörnufræði Ursins má lesa eftirfarandi á bls. 36:

Stjörnuspekingar hafa leitað svo grandgjæfilega um allan himininn, að það eru lítil líkindi til nein stór jarðstjarna og óþekkt gjeti verið til innar, eður nær sólu, enn braut Uranusar liggur; ekki heldur líkindi til að nein slík stjarna sje utar, sú er eigi heima í voru sólkjerfi.

Ekki  voru liðin nema fjögur ár frá útkomu íslensku þýðingarinnar, þegar stjörnufræðing-arnir J. G. Galle og H. L. d'Arrest komu auga á nýja reikistjörnu utan við braut Úranusar. Þeir höfðu fengið ábendingar frá U. Le Verrier um það, hvar skyldi leita, en hann hafði notað áður óútskýrða óreglu á braut Úranusar og truflanareikning til að spá fyrir um tilvist nýju reikistjörnunnar og stöðu hennar á tilteknum tíma.

Hin áhugaverða saga um fund Neptúnusar árið 1846 verður ekki rakin hér, en atburðurinn vakti gífurlega athygli á sínum tíma og var talinn mikilvægur stuðningur við þyngdarfræði Newtons. Í greininni Um þýngd reikistjarnanna frá 1849 fjallar Björn Gunnlaugsson um truflanareikningana að baki og segir meðal annars á bls. 63-65:

Svo eru stjörnufræðingar orðnir vel að sér í [...] þýngdarlögum, að einn þeirra hefur nú nýlega reiknað út tilveru plánetu, er einginn vissi af áður; sagði hann fyrir hvar hún væri, hvernig hún geingi og hvað þúng hún væri, án þess að hafa séð hana, svo hann eins og vóg hana óséna. Þessi maður var Le Verrier, frakkneskur maður. Þar á eftir fór annar stjörnumeistari í Berlín, Galle að leita að plánetunni þar sem hinn fyrri tilvitnaði, eða eptir þeim gángreglum sem hann eignaði henni; og plánetan stóð þar, sem hún átti að standa eptir þeim, þegar Galle fann hana þann 23. sept. 1846. [...]  Allt þetta er spunnið útaf þýngdarlögum þeim hinum nafnfrægu, er spekingurinn Newton uppgötvaði, hver lög ad staðfestast daglega, og plánetan Neptunus er framkomin sem nýtt vitni uppá þeirra sannleika.

Árið 1878, tveimur árum eftir að Björn Gunnlaugsson lést, birtist þýdd grein í Ísafold undir heitinu Uppgötvan Leverriers (1. hluti; 2. hluti). Þótt innihaldið hafi lítið sögulegt gildi, gefur greinin sennilega dágóða mynd af blaðaumfjöllun þess tíma um vísindaleg efni.

Eftir fund Neptúnusar og frægðina, sem fylgdi í kjölfarið, lagði Le Verrier til atlögu við svipað verkefni, nefnilega það að útskýra, hvers vegna hreyfing Merkúríusar um sólu væri ekki í fullu samræmi við útreikninga byggða á þyngdarfræði Newtons. Árið 1859 setti hann fram rökstudda kenningu þess efnis, að óreglan stafaði af þyngdartruflunum nýrrar og áður óþekktrar reikistjörnu, sem væri nær sólu en Merkúríus. Hann gaf stjörnunni nafnið Vúlkan.

Leitin að nýju reikistjörnunni hófst því sem næst samstundis eftir tilkynningu Le Verriers og fljótlega þóttust ýmsir hafa komið auga á Vúlkan. Fyrsta tilkynningin, sem stjörnumeistarinn tók alvarlega kom frá franska lækninum og stjörnuáhugamanninum E. M. Lescarbault í árslok 1859. Le Verrier tilkynnti Frönsku vísindaakademíunni um fundinn upp úr áramótunum og fréttin kom nær samstundis í dagblöðum. Hér á landi birstist hún í Íslendingi 20. apríl 1860 (bls. 15) og 19. maí mátti sjá þýdda grein um efnið á forsíðu sama blaðs.

Athuganir Lescarbault voru fljótlega gagnrýndar harðlega og leitin að reikistjörnunni hélt því áfram. Á næstu áratugum birtust reglulega fréttir um það, að Vúlkan hefði sést, en við nánari athugun reyndust þær allar tilhæfulausar.

Útlend frétt í Ísafold, 5. sept 1878 (bls. 88).

Rétta skýringin á óreglunni á braut Merkúríusar fannst ekki fyrr en en í árslok 1915, þegar Einstein sýndi fram á, að hún var bein afleiðing af afstæðilegum eiginleikum þyngdarinnar (sjá stutta umfjöllun um sögu almennu afstæðiskenningarinnar í fyrri færslu).

Eftir fund Neptúnusar árið 1846 fengu stjörnufræðingar áhuga á því að kanna, hvort fleiri stórar reikistjörnur kynnu að leynast enn utar í sólkerfinu. Ýmsar tilraunir til að finna slíkar stjörnur með aðstoð truflanareiknings hófust í kjölfarið og árið 1930 fannst dvergreikistjarnan Plútó í einnri slíkri. Síðar kom þó í ljós, að sá fundur var tilviljun.

Hér verður ekki fjallað nánar um þann hluta sólkerfisins, sem er utan brautar Neptúnusar. Þó get ég ekki stillt mig um að nefna nýlega tilgátu um níundu reikistjörnuna, sem talsvert hefur verið til umræðu meðal vísindamanna. Leitin að henni hefur ekki enn borið árangur og í ljósi þess hafa sumir látið sér detta í hug, að þarna sé ekki um reikistjörnu að ræða heldur svartholskríli. Af þessu má sjá, að enn þann dag í dag eru settar fram heillandi tilgátur um eðli og eiginleika sólkerfisins.

Á sínum tíma hafði Newton nokkrar áhyggjur af því, að þyngdartruflanir gætu valdið óstöðugleika, annars vegar í dreifingu fastastjarnanna í óendanlegum stjörnuheimi, og hins vegar í hreyfingum himintungla í sólkerfinu. Fyrra atriðið verður tekið til umræðu í næstu færslu (2d), en hér verður fjallað stuttlega um hið síðarnefnda.

Eins og áður hefur verið minnst á, var Newton þeirrar skoðunar, að við sköpun sólkerfisins hefði Guð almáttugur komið himintunglunum þannig fyrir, að sem minnst óregla yrði á hreyfingum þeirra vegna innbyrðis þyngdartruflana. Ef í óefni stefndi, myndi hann hins vegar grípa í taumana og endurstilla kerfið.

Stefán Björnsson var undir verulegum áhrifum frá  Newton, eins og sjá má  í hinni merku dispútatíu hans, Um verkan halastjarna, frá 1758. Eftir að hafa bent á, að halastjörnur koma úr öllum áttum inn í reikistjörnukerfið, segir hann meðal annars (§6, bls. 6-7; Hér þarf að hafa í huga, að á þessum tíma var massi halastjarna yfirleitt talinn mun meiri en hann er í raun):

Ef halastjörnur gengju um dýrahringinn, þegar þær koma inn í reikistjörnukerfi okkar, yrði minna bil milli þeirra og reikistjarnanna, en verður í raun [...] og afleiðingin yrði sú að reikistjörnurnar myndu rykkjast af miklu meira afli að halastjörnunum og halastjörnur aftur að reikistjörnum. Þess vegna myndu brautir reikistjarna og halastjarna bogna úr hófi fram, [...] sólfirð og sólnánd þokast fram eða hörfa úr hófi og miðskekkjur og fjarlægðir yrðu afar óstöðugar. [...] Í stuttu máli sagt yrðu of miklar truflanir og óregla á hreyfingum allra reikistjarna og halastjarna.  Af framansögðu er augljóst að góðfús Guð hefur af óendanlegri visku sinni réttilega fengið halastjörnunum stað utan dýrahringsins, einmitt í þeim tilgangi að komist yrði hjá of miklum truflunum á gangi og brautum reglubundinna stjarna, sem annars yrðu óhjákvæmilega. Svo augljóst er guðdómlegt markmið með því að setja halastjörnur utan dýrahringsins. Ég á ekki við markmið með halastjörnum í sjálfum sér, en aðeins að þær skuli vera fjarri dýrahringnum.

Í næstu setningu vitnar Stefán svo í Newton:

Önnur tilgangsrök fyrir því að halastjörnur séu fjarri dýrahringnum færir snillingurinn Newton í [þriðju efnisgrein í eftirmála Stærðfræðilögmálanna]: „Af þessu gefur að skilja hvers vegna halastjörnurnar eru ekki í dýrahringnum eins og reikistjörnur, en flakka þaðan og berast á ýmsa vegu um geiminn. Auðvitað í þeim tilgangi að í sólfirð sinni, þegar þær hreyfast hægast, séu þær sem fjærst hver annarri og togi sem minnst gagnkvæmt hver í aðra.“   Og þessi tvennu tilgangsrök reynist fullnægjandi, hlutlæg, frumspekileg röksemd sem orkaði á Guð, svo hann setti halastjörnurnar víðsfjarri dýrahringnum.

Á fyrri hluta átjándu aldar veltu ýmsir aðrir fyrir sér stöðugleika sólkerfisins, þar á meðal Halley og Euler. Það var þó ekki fyrr en þeir Lagrange og Laplace komu til sögunnar upp úr miðri öldinni, sem rannsóknir á stöðugleikanum hófust fyrir alvöru. Á árunum 1773 til 1784 sýndu þeir fram á með truflanareikningi, að ef utanaðkomandi þyngdaráhrif á dæmigerða reikistjörnu eru ekki meiri en þau, sem nú ríkja í sólkerfinu, verða breytingar á braut hennar sveiflukenndar, en innan viðunandi marka. Að forsendunum gefnum, ætti sólkerfið því að vera stöðugt (sjá einnig viðbót í færslulok).

Rannsóknir í aflfræði himintungla hafa ávallt verið vinsælar meðal stærðfræðinga, ekki síst eftir að Frakkinn H. Poincaré birti niðurstöður sínar um þriggja hnatta vandamálið á tíunda áratugi nítjándu aldar. Sú mikilvæga umfjöllun markaði upphaf rannsókna á ringli (kaos) í sólkerfinu og reyndar einnig á heilli undirgrein stærðfræðinnar, sem gengur undir nafninu ringlfræði. Um þessa skemmtilegu þróun má meðal annars lesa í eftirfarandi heimildum:


Viðbót (28. október 2021). Allt frá því ég fyrst frétti af því sem ungur námsmaður, að mig minnir í kaflanum um Laplace í hinni frábærlega skemmtilegu, en jafnframt sagnfræðilega ónákvæmu bók, Men of Mathematics, eftir E. T. Bell, hef ég haft áhuga á vandamálinu um stöðugleika sólkerfisins. Sjálfur hef ég ekkert lagt af mörkum á því sviði, heldur hefur áhuginn ætíð verið takmarkaður við sögu þess og þá einkum í tengslum við almenna sögu rannsókna á aflfræði himintungla. Þrátt fyrir hafa lesið talsvert um þetta efni í gegnum tíðina, tókst mér aldrei að skilja til fullnustu sambandið milli framlaga þeirra Laplace og Lagrange til stöðugleikavandamálsins.            

Fyrir nokkru rakst ég á fróðlegar greinar eftir ítalska vísindafræðinginn Massimiliano Badino, þar sem ég tel mig loksins hafa fengið fullnægjandi lýsingu á atburðarásinni. Badino bendir jafnframt á ákveðið vandamál vaðandi vísindasöguritun, sem margir raunvísindamenn ættu að kannast við. Ég mæli með þessum greinum hans:

 


* Stjarneðlisfræði og heimsfræði á Íslandi: Efnisyfirlit *


 

Birt í Átjánda öldin, Eðlisfræði, Nítjánda öld, Stjörnufræði

Stjarneðlisfræði og heimsfræði á Íslandi 2: Tímabilið 1780-1870 (b) Stjarneðlisfræði fyrir daga Newtons

Yfirlit um greinaflokkinn

Margir sagnfræðingar vilja rekja upphaf nútíma stjarneðlisfræði til miðbiks nítjándu aldar, þegar ný tækni, byggð á eðlisfræði og efnafræði, var tekin í notkun við rannsóknir á fyrirbærum stjörnuhiminsins. Hér er fyrst og fremst átt við hinar mikilvægu litrófsmælingar, en jafnframt ljósmyndatæknina, sem varð sífellt gagnlegri eftir því sem tímar liðu. Nafnið stjarneðlisfræði (þ. Astrophysik) mun og fyrst hafa sést á prenti árið 1865 (í riti þýska eðlisfræðingsins K. F. Zölners um ljósmælingar). Um þessa byltingarkenndu þróun og hvernig vitneskja um hana barst til Íslands verður fjallað í næsta kafla greinaflokksins (3).

Að mati þess, sem þetta ritar, má rekja sögu stjarneðlisfræðinnar mun lengra aftur í tímann, eða sem nemur 250 árum; til upphafs þeirrar fræðigreinar, sem við nú köllum kennilega stjarneðlisfræði (e. theoretical astrophysics). Það heiti mun að vísu ekki hafa komið til sögunnar fyrr en með verkum A. S. Eddingtons og samtímamanna hans á fyrstu áratugum tuttugustu aldar og ýmsir sagnfræðingar vilja því rekja upphaf greinarinnar til þess tíma. En í hugum flestra stjarneðlisfræðinga (allavega þeirra, sem hafa haft fyrir því að kynna sér söguna) voru fyrstu forverarnir upp á sitt besta á sautjándu öld, menn eins og Kepler, Galíleó, Descartes, Huygens og síðast en ekki síst Newton.

Allir voru þessir frumkvöðlar framúrskarandi stærðfræðilegir lærdómsmenn og náttúruspekingar og jafnframt  ákafir stuðningsmenn sólmiðjukenningarinnar. Það voru þeir, ásamt ýmsum öðrum, en kannski ekki jafn þekktum lærdómsmönnum fyrri tíma, sem mótuðu grundvöll sígildrar aflfræði og ljósfræði og beittu þeirri þekkingu smám saman til að öðlast eðlisfræðilegan skilning á eiginleikum sólkerfisins og gangi himintungla. Yfirlit um þessa merku sögu má meðal annars finna í eftirfarandi ritsmíðum:

 

Jóhannes Kepler

Fyrsti stjarneðlisfræðingurinn, Jóhannes Kepler, árið 1620.  Mynd: Photographische Gesellschaft Berlin. Sjá hér fróðlegan pistil um ýmsar myndir af Kepler.

Í mínum huga er Kepler tvímælalaust fyrsti eiginlegi stjarneðlisfræðingurinn og bók hans Astronomia Nova fyrsta stjarneðlisfræðiritið. Þetta mikilvægasta verk hans kom út árið 1609 og heitir fullu nafni Astronomia Nova ΑΙΤΙΟΛΟΓΗΤΟΣ, seu physica coelestis, tradita commentariis de motibus stellae Martis ex observationibus G.V. Tychonis Brahe (Ný stjörnulist, grundvölluð á orsökum, eða náttúruspeki stjörnuheimsins, kynnt með athugasemdum um hreyfingar stjörnunnar MARS, byggð á mælingum aðalsmannsins Týchós Brahe - Verkið er til í endurskoðaðri enskri þýðingu frá 2015).

Yfirlýst markmið höfundarins var að beita náttúruspeki þess tíma til að útskýra hreyfingar himintunglanna og sjálfur titillinn vísar í þá fyrirætlan: Astronomia nova = ný stjörnulist = ný stjörnufræði  og  physica coelestis = náttúruspeki stjörnuheimsins = eðlisfræði stjörnuheimsins (= stjarneðlisfræði).

Verkið byggir meðal annars á sólmiðjukenningu Kóperníkusar og mælingum Týchós Brahe á tilfærslu föruhnattanna á stjörnuhimninum, sérstaklega þó ítarlegum mælingum hans á hreyfingu Mars. Það er í þessu verki sem Kepler „leiðir út“ fyrstu tvö lögmál sín af þremur, sem lýsa hreyfingum reikistjarnanna umhverfis sólina. Að auki setur hann fram „eðlisfræðilega kenningu“ um það, hvernig sólin valdi hreyfingu reikistjarnanna, hina fyrstu, sem mér er kunnugt um.

Í verkinu Astronomia nova frá 1609 studdist Kepler við sólmiðjukenningu Nikulásar Kóperníkusar (til vinstri) og hinar nákvæmu mælingar Týchós Brahe (til hægri). Myndir: Wikipedia.

 

Lögmál Keplers

Flestir núlifandi Íslendingar kannast eflaust við lögmálin þrjú, sem kennd eru við Kepler. Mikilvægara er þó, að Newton notaði þau sem vegvísi í leit sinni að hinu merka lögmáli um þyngdina, sem hann setti fram árið 1687. Um þyngdarlögmál Newtons og kynni Íslendinga af því verður fjallað í næstu færslu, en hér verður rætt nánar um lögmál Keplers og útskýringar hans á hreyfingum himintungla.

Eins og áður sagði, birti Kepler fyrstu tvö lögmálin í Astronomia nova árið 1609, en hið þriðja kom hins vegar ekki fyrr en tíu árum síðar í verkinu Harmonices Mundi (Samhljómur heimsins; ensk þýðing; umfjöllun). Í báðum tilvikum eru lögmálin dreifð innan um annað efni og ekki sérlega aðgengileg. Árið 1622 setti Kepler þau hins vegar fram á aðeins skipulegri hátt í 4. bindi kennslubókarinnar Epitome Astronomiae Copernicanae (Ágrip af stjörnufræði Kóperníkusar; ensk þýðing; umfjöllun), sem í raun er nákvæm fransetning á stjörnufræði Keplers sjálfs, frekar en Kóperníkusar.  Það var þó ekki fyrr en með alþýðuriti Frakkans J. Lalandes frá 1774, Abrégé d'astronomie, sem lögmál Keplers fengu þau númer, sem við þekkjum í dag.

Mynd úr Astronomia nova frá 1609 (bls. 286) Hún á að sýna sporbaug reikistjörnunnar Mars. Það dæmi var fyrsta vísbending Keplers um niðurstöðu, sem nú ber nafnið fyrsta lögmál Keplers.

Í fyrstu voru lögmálin lítið notuð, enda voru verk Keplers erfið aflestrar og stærðfræðin aðeins aðgengileg fáum, sérstaklega ef menn vildu notast við annað lögmálið (meira hér). Árið 1627 gaf Kepler hins vegar út Tabulae Rudolphinae (Töflur Rúdólfs; umfjöllun), langþráðar stjarnfræðitöflur, byggðar á hans eigin lögmálum og athugunum Týchós Brahe.

Stjörnufræðingar uppgötvuðu fljótlega, að Töflur Rúdólfs voru til muna nákvæmari en allar fyrri töflur af svipaðri gerð og olli það vaxandi áhuga á lögmálum Keplers. Hins vegar sýndi Galíleó þeim ávallt lítinn sem engan áhuga og hið sama gilti um Descartes og fylgismenn hans. Notkun þeirra varð því ekki mjög almenn fyrr en Newton sýndi fram á mikilvægi þeirra í Philosophiæ Naturalis Principia Mathematica (Stærðfræðilögmálum náttúruspekinnar) árið 1687.

Af ástæðum, sem komið verður inn á hér á eftir, notuðu danskir stjörnufræðingar hvorki Töflur Rúdólfs né kennslubók Keplers, Epitome, fyrr en Ole Römer varð prófessor við Hafnarháskóla árið 1681. Hann notaði þessi verk meðal annars í kennslunni, eins og sjá má af dispútatíum Magnúsar Arasonar og Þorleifs Halldórssonar frá árunum 1707 til 1710. Keplerslögmálin urðu þannig fastur hluti af námsefninu við Háskólann á níunda áratugi sautjándu aldar án nokurra áhrifa frá Newton, enda áttu enn eftir að líða nokkrir áratugir þar til náttúruspeki enska meistarans barst til Kaupmannahafnar.

Fyrstu ítarlegu umfjöllunina á íslensku um öll lögmál Keplers er að finna í Stjörnufrædi Ursins frá 1842 (bls. 76-78).  Eins og minnst var á í færslu 2a, kemur fyrsta lögmálið þó við sögu strax í fyrstu íslensku alþýðuritunum, bæði í verkum Magnúsar Stepensen og Hannesar Finnssonar frá árinu 1797. Hvorugur þeirra talar þó um ellipsur í því sambandi, heldur nota orðalagið „aflangir hringir“ um brautirnar (orðið sporbaugur er eftir Jónas Hallgrímsson og kemur fyrst fyrir í Stjörnufræði Ursins). Hið sama gerir Jón Jónsson ári síðar í þýðingu sinni á Náttúruskoðara Suhms.

Myndin er úr Stjörnufrædi Ursins og á að útskýra fyrstu tvö lögmál Keplers um hreyfingar í sólkerfinu: 1. Braut sérhverrar reikistjörnu (AGEDBPH) er sporbaugur með sólina (S) í öðrum brennistað (brennipunkti) brautarinnar.   2. Tengilína sérhverrar reikistjörnu og sólar fer yfir jafnstór flatarmál (skyggðu svæðin) á jafnlöngum tíma.  -  Af 2. lögmáinu má sjá, að hraði reikistjörnu á braut sinni er breytilegur, mestur í sólnánd P, minnstur í sólfjærð (sólfirð) A.

Í upphafi sýndu stjörnufræðingar þriðja lögmáli Keplers sérstaklega lítinn áhuga. Ástæðan var einfaldlega sú, að það kom að litlu gagni við  brautarreikninga. Þetta breyttist þó með framsetningu Newtons árið 1687, þar sem hann sýndi, hvernig finna má massa sólar og annarra himinhnatta, til dæmis jarðarinnar og Júpíters, út frá upplýsingum um meðalfjarlægð og umferðartíma fylgihnatta þeirra.

Fyrsti Íslendingurinn, sem vitað er með vissu að hafi beitt þriðja lögmálinu við útreikninga, var lærisveinn Römers, Magnús Arason. Í dispútatíunni Phases lunae (Fasar tunglsins) frá 1710 segir Magnús svo:

Meðalfjarlægðir reikistjarnanna frá sólinni skv. þriðja lögmáli Keplers. Myndin sýnir reikninga Magnúsar Arasonar á síðu 6 í síðustu dispútatíu hans um fasa tunglsins frá 1710. Hann byrjar á ystu reikistjörnunni, Satúrnusi. Umferðartími hennar er 29 júlíönsk ár og 155 dagar, samtals 10747 dagar. Þriðja rótin af þeirri tölu er 22,07 og með því að hefja útkomuna í annað veldi fæst 487. Þriðja rótin af umferðartíma jarðar, 365 dögum, er 7,16, sem í öðru veldi er 51,07. Fjarlægð jarðar frá sólinni er 12900 jarðarþvermál. Samkvæmt þriðja lögmáli Keplers, sem sett er fram á síðunni á undan með beinni tilvitnun í 4. bindi af Epitome Keplers (bls. 501), fæst þá fjarlægð Sarúrnusar frá sólinni með þríliðu: (487/51,07) x 12.900 = 122.920 jarðarþvermál. Á sama hátt má reikna fjarlægðir hinna reikistjarnanna, Júpíters, Mars, Venusar og Merkúríusar.

Það var hins vegar árið 1798, sem þriðja lögmál Keplers var fyrst sett fram á prenti á íslensku. Það var í neðanmálsgrein við Náttúruskoðara Suhms á bls. 100. Þar notast Jón lærði Jónsson við kennslubók C. Horrebows og segir:

Stjörnu-meistarar fundid hafa, ad Gud gjört hafi á vissri fjarlægdar tiltölu hvörrar plánetu, sem er sú: ad þær ferhyrndu edur quadrat-tölur þeirra umhlaups-tíma, sem eru í sömu hlutföllum sín á millum, sem þær ferstrendu kúbík-tölur þeirrar fjarlægdar. Þegar madur nú veit umhlaups-tíma edur árslengd tveggja pláneta, er hægt med þriggja-lida-reglu, ad finna fjarlægd annarar þeirra frá sólunni, viti madur ádur hvad önnur er lángt í burtu.

Í lokin má geta þess, að eftirmaður C. Horrebows, Th. Bugge, fór vandlega yfir lögmál Keplers í fyrirlestrum við Hafnarháskóla, sem ýmsir Íslendingar sóttu. Þetta má til dæmis sjá af bók hans um stjörnufræði frá 1796 (bls. 113-119). Á fyrsta fjórðungi nítjándu aldar voru lögmálin, að minnsta kosti það fyrsta, þegar orðin hluti af almennri þekkingu upplýstra leikmanna í Danmörku, þótt þau væru ekki alltaf tengd við nafn Keplers. Á Íslandi urðu þau hluti af námsefni í eðlis- og stjörnufræði frá og með stofnun Reykjavíkurskóla haustið 1846.

 

Hreyfiaflið í sólkerfinu

Í jarðmiðjukenningum fornaldar og miðalda hreyfðust föruhnettir og fastastjörnur með hvelum sínum umhverfis jörðina. Hreyfiaflið kom ýmist að ofan, frá svokölluðu frumhreyfihveli, sem umkringdi stjörnuheiminn, eða stafaði frá yfirskilvitlegum fyrirbærum af ýmsu tagi, svo sem öndum eða sálum föruhnattanna eða þá englum, sem stýrðu hvelunum. Þrátt fyrir fjölda mismunandi tilrauna til skýringar í gegnum aldirnar, náðist aldrei samkomulag um það, hvernig útfæra skyldi hugmyndirnar í smáatriðum.

Keplers byrjaði snemma að velta því fyrir sér, hvað gæti orsakað hreyfingar reikistjarnanna eftir sporbaugum. Hann komst fljótlega að þeirri niðurstöðu, að hreyfiaflið hlyti að búa í sólinni, sjálfri miðjunni, sem veitti öllu kerfinu ljós og yl.  Með tímanum þróaði hann „eðlisfræðilega kenningu“, sem meðal annars var reifuð í Astronomia nova árið 1609 og að lokum í endanlegri mynd í Epitome þrettán árum síðar.

Árið 1600 kom út ritið De magnete (Um segulinn; ensk þýðing; umfjöllun) eftir W. Gilbert, þar sem meðal annars var sýnt fram á, að jörðin væri segull. Þessi niðurstaða, sem og bókin öll, hafði mikil áhrif á Kepler, sem setti strax fram þá hugmynd, að hinar reikistjörnurnar og sólin væru líka seglar. Þetta notaði hann í hugmyndum sínum um hreyfiaflið í sólkerfinu.

Samkvæmt kenningunni geislar hreyfiaflið frá sólinni líkt og ljós og dofnar með fjarlægð eins og ljós og segulafl. Sólin snýst og aflgeislarnir með henni og þeir draga reikistjörnurnar með sér í einskonar hvirfli. Segulafl sólar verkar jafnframt beint á reikistjörnuseglana og færir þá ýmist nær eða fjær sólinni. Afleiðingin verður sú, að brautir hnattanna víkja frá hringlögun og verða að sporbaugum.

Ein af myndum Keplers í 4. bindi Epitome frá 1622 (bls. 520 og 588). Hún á að hjálpa lesandanum til að skilja, hvernig sólin dregur reikistjörnurnar með sér eftir sporbaugsbrautum samkvæmt hugmyndum höfundarins.

Þessi kenning Keplers virðist hafa haft lítil áhrif á náttúruspekinga og stjörnufræðinga samtímans, sennilega vegna þess, að menn voru lengi að venjast þeirri hugsun að nota mætti aflfræði til að útskýra hreyfingar reikistjarnanna. Fyrsti spekingurinn, sem ég veit til að hafi fjallað opinberlega um kenningu Keplers, var Leibniz í ritgerð um aflfræði himintungla, Tentamen de motuum coelestium causis, árið 1689. Rétt er þó að geta þess, að óháð Kepler setti Galíleó fram þá hugmynd, að reikistjörnurnar snerust um sólina vegna möndulsnúnings hennar, en hann útfærði þá hugmynd aldrei nánar.

Mikilvægt er að hafa í huga, að í hreyfiaflskenningu Keplers er hvergi minnst á aðdráttarafl og þyngdin kemur þar hvergi við sögu. Kepler hafði að sjálfsögðu sínar eigin hugmyndir um þyngdina og virðist hafa talið, að hún væri nær eingöngu bundin við jörðina og væri einna líkust segulafli.

Hugmynd hans var sú, að „eðlislíkir hlutir“ drægjust hver að öðrum. Það væri ástæðan fyrir því, að efnishlutar jarðarinnar héldust saman, jafnvel þótt hún væri ekki í miðju heimsins, eins og gert var ráð fyrir í jarðmiðjukenningum. Að auki virðist Kepler hafa talið, að þetta aðdráttarafl væri skammdrægt og hann velti því þess vegna ekkert fyrir sér, hvort það breyttist með fjarlægð milli hlutanna (sjá nánar hér).

Í Náttúruskoðara má finna umfjöllun, sem tengst hugmyndum Keplers (og einnig Descartes) um þyngdina. Þar segir Suhm á bls. 14-16:

Jördin hnýgur med þýngd sinni að midpúnkti, hennar partar halda sér þess vegna þétt saman […] En hvad er þýngdin í sjálfri sér, og í hvörju er hún fólgin? Hér hljótum vér oss hönd á munn ad leggja, og vidurkénna ad Guds vísdómur tekur lángt fram vorri þeckingu; samt sem ádur er þýngdin og hennar lög í náttúrunni oss nockurnveginn kunnug, og líka þar af fljótandi misjöfnudur í hræringunum, er rísa af því ad einn hlutur þryckir ødrum, edur steytir á annann.

Og neðanmáls vísar Jón Jónsson í dönsku þýðinguna af bók W. Derhams, Astro- et physico-Theologie frá 1759, og bætir við:

Væri ecki þessi eginnlegleikur jördunni af Skaparanum gefinn, fyrir hvörn ad allir hennar samanstandandi partar dragast svo fast saman, kynni hún ei ad standast, því ella hryndi hún á augabragdi öll sundur í smá mola, vegna hennar yfrid hvatskeytlega snúnings og flugs áfram kríngum sólina […] En Mælingameistarar reikna að kraptur sá, sem heldur jördunni saman fyrir þýngdina, sé 288sinnum meiri þeim, sem sundurdreifa vill hennar samstandandi pörtum.

Talan 288, sem þarna er nefnd, er komin frá Descartes.

Vangaveltur um stærð alheimsins verða til umræðu í seinni færslum og því er við hæfi að nefna það hér, að alheimur Keplers var afmarkaður og endanlegur. Fyrir því færði hann sterk eðlisfræðileg rök, sem hann birti í opnu bréfi til Galíleós árið 1610, Dissertatio cum nuncio sidereo (Samtal við sendiboða stjarnanna; ensk þýðing). Þar beitir Kepler þekkingu sinni í ljósfræði og sýnir fram á, að í óendanlegum og stöðugum stjörnuheimi er öll hvelfingin ávallt jafn björt og stjörnuyfirborð. Í slíkum heimi er því jafn bjart á nóttu sem degi. Eins og allir vita er myrkur á nóttinni og af því leiðir, að stjörnuheimurinn hlýtur að vera endanlegur. Þessi röksemdafærsla er núna þekkt undir nafninu þversögn Olbers. Þrátt fyrir „sönnun“ Keplers, tók Galíleó aldrei endanlega afstöðu til þess, hvort stjörnuheimurinn væri óendanlegur eða ekki.

 

Örlítil viðbót um þróunina frá Kóperníkusi til Newtons

Það tók sólmiðjukenninguna mun lengri tíma en margir halda að vinna sigur á hinum fornu jarðmiðjuhugmyndum,  sérstaklega þó þeirri, sem byggð er á Almagest, hinu mikla verki  Ptólemaíosar frá annarri öld. Reyndar höfðu margir stjörnufræðingar þegar gefist upp á hugmyndum hans í lok sextándu aldar, en í staðin var þá komin ný jarðmiðjukenning, kennd við Týchó Brahe. Sú kenning naut mikillar hylli allt fram yfir miðja sautjándu öld, ekki síst meðal Jesúíta og annarra kaþólikka, sem og Dana.

Í kerfi Brahes er jörðin í miðju heimsins. Um  hana ganga tunglið og sólin, en allir aðrir föruhnettir snúast um sólina (sjá mynd hér fyrir neðan). Þessi nýi keppinautur sólmiðjukenningarinnar kom fyrst á prenti árið 1588 í riti Brahes, De mundi aetherei recentioribus phaenomenis (Um nýleg fyrirbæri í vakaheimi; umfjöllun). Það var þó ekki fyrr en Galíleó hafði skýrt frá hinum mögnuðu sjónaukaathugunum sínum í Sidereus nuncius (Sendiboði stjarnanna; ensk þýðing; umfjöllun) árið 1610, sem málsvarar jarðmiðjukenningarinnar, einkum Jesúítar, gripu fyrir alvöru til varna með heimsmynd Brahes að vopni. Hún gat nefnilega útskýrt flestar af athugunum Galíleós jafn auðveldlega og sólmiðjukenningin.

Þekktasta rit Jesúíta um þetta og tengd efni er Almagestum novum (Hið nýja Almagest; framhald hér; umfjöllun) frá 1651. Höfundurinn G. B. Riccioli var í hópi merkustu náttúruspekinga á fyrri hluta sautjándu aldar, en til skamms tíma hefur lítið verið um hann fjallað í sögubókum, sennilega vegna þess að hann starfaði í skugga þekktari einstaklinga, eins og Keplers, Galíleós og Descartes.

Árið 1632 kom út hið mikla rit Galíleós, Dialogo [...] sopra i due massimi sistemi del mondo Tolemaico, e Copernican (Samræður um heimskerfi Ptólemaíosar og Kóperníkusar; ensk þýðing; umfjöllun), verkið sem varð kveikjan að deilum hans við kaþólska kirkjuvaldið. Svo virðist, sem ein af ástæðunum fyrir viðbrögðum kirkjunnar hafi verið, að í bókinni beinir Galíleó spjótum sínum bæði að kenningum Ptólemaíosar og Brahes, án þess þó að nefna Brahe nokkurs staðar á nafn. Galíleó mun nefnilega hafa lofað kirkjunnar mönnum að láta kenningu Brahes í friði og fjalla aðeins um heimsmynd Ptólemaíosar, sem kirkjan leit þá þegar á sem úrelta kenningu. Þetta mun, ásamt öðru, hafa reitt kirkjuhöfðingjana til reiði, með afleiðingum sem allir þekkja.

Í dispútatíu Gísla Þorlákssonar frá 1651, De stellis fixis et errantibus (Um fastastjörnur og föruhnetti; umfjöllun), er meðal annars fjallað um deilurnar milli fylgismanna Kóperníkusar og Brahes. Þar er og minnist á ýmsar niðurstöður Galíleós, án þess þó að hann sé nefndur á nafn! Til dæmis ræðir Gísli um hluta af rökunum í Dialogo gegn jarðmiðjukenningunni, eins og sjá má í eftirfarandi myndatexta:

Til vinstri: Jarðmiðjuheimur Brahes úr bók hans Um nýleg fyrirbæri frá 1588 (bls.189).  Til hægri: Sólmiðjuheimur Galíleós úr bók hans Samræður um heimskerfin frá 1632 (bls. 520).  -  Í staðhæfingum XV og XVI í dispútatíunni Um fastastjörnur og föruhnetti frá 1651 segir Gísli Þorláksson meðal annars um þessi heimskerfi:  „Talsmenn kerfis Kóperníkusar finna kerfum Ptólemaíosar og Týchós margt til foráttu, einkum þó að hvorugur þeirra hafi stutt það traustum rökum að jörðin sé í miðju alheimsins. En óbilgirni þeirra dylst þó engum, því sjálfir hafa þeir ekki enn sýnt óyggjandi fram á, að velja eigi sólinni stað í miðju heimsins. Hvers vegna heimta þeir svo af öðrum það sem þeir geta ekki sjálfir afrekað?  Þegar þeir svo telja, að það fari í bága við náttúruna að þau himintungl sem mynda einn alheim hafi tvennar undirstöður, það er að segja samkvæmt fylgismönnum Tychos kyrrstæða jörð og hreyfanlega sól, þá vega þeir sig með eigin sverði. Því sjálfir segja þeir að Merkúríus, Venus, jörðin, Mars, Júpíter og Satúrnus hreyfist um sólina sem fastan og óhagganlegan miðpunkt, en tunglið aftur um hreyfanlega jörðina. Eru það ekki tvennar undirstöður: sólin og jörðin? Og hvað ef sést hafi að auki að Júpíters-reikistjörnurnar snúist um hinn hreyfanlega Júpíter?“

Það er ekki nóg með, að Gísli sleppi því að nefna Galíleó í dispútatíunni, heldur minnist hann hvorki á Kepler né lögmál hans. Það er sennilega vegna áhrifa frá nemanda og samstarfsmanni Brahes, Longomontanusi, fyrsta prófessornum í stjörnufræði við Hafnarháskóla. Bók hans Astronomia Danica (Dönsk stjörnulist; umfjöllun), sem kom fyrst út 1622 (aftur 1640 og 1663) hafði talsverð áhif og var víða notuð við kennslu, einkum þó í skólum Jesúíta. Longomontanus hélt stíft fram heimsmynd kennara síns og var eindreginn andstæðingur Keplers, fyrrum samstarfsmanns síns hjá Brahe í Prag. Ósættið við Kepler var ástæða þess, að fyrrnefndar Töflur Rúdólfs voru ekki notaðar í Danmörku fyrr en á síðustu áratugum sautjándu aldar.

Til vinstri: Galíleó Galíleí. Málverk eftir Justus Sustermans frá 1636  - Til hægri: René Descartes á málverki eftir Frans Hals eldri (ártal óþekkt).

 

Hvirflar Descartes

Samkvæmt kenningum Descartes eru efni og rúm í vissum skilningi tvær hliðar á sama fyrirbærinu; án efnis væri ekkert rúm og öfugt. Af því leiðir að tóm er ekki til og geimurinn er fullur af efni, þar sem kvikir efnishlutar núast saman og mynda örlitlar og óendanlega deilanlegar agnir. Agnirnar, sem eru reyndar þrenns konar hjá Descartes, mynda samfellt straumefni (vökva) eða vaka (eter, plenum). Allir himinhnettir eru samsettir úr samþjöppuðum og grófum afbrigðum þessa vaka og umhverfist þá eru hvirflar úr þynnra straumefni.

Descartes aðhylltist sólmiðjukenninguna, svo stærsti hvirfillinn í sólkerfinu er að sjálfsögðu í kringum sólina, og það er hann sem dregur reikistjörnurnar með sér umhverfis hana. Aðrar sólir hafa einnig sína hvirfla og alheimur er samsettur úr slíkum fyrirbærum, eins og sýnt er á myndinni hér fyrir neðan. Þegar sólarhvirflar eyðist af einhverjum ástæðum, verða þeir að reikistjörnum, ef leifar þeirra festast í nálægum hvirflum, annars að halastjörnum, sem ferðast milli hvirfla.

Árið 1633 var Descartes þegar búinn að semja rit um hvirflakenninguna, Le Monde (Heimurinn; ensk þýðing; umfjöllun), en vegna réttarhaldanna yfir Galíleó kom það ekki út fyrr en að höfundi látnum, 1664. Í millitíðinni birtist þó hið mikla rit hans Principia philosophiae (Lögmál heimspekinnar; ensk þýðing; umfjöllun), þar sem kenningunni eru gerð ítarleg skil.

Hvirflakenningin komst fljótlega á mikið flug í Frakklandi og breiddist þaðan út til annarra landa. Í því sambandi má nefna, að minnst var á kenninguna á prenti í fyrsta sinn í Danmörku í áðurnefndri dispútatíu Gísla Þorlákssonar, Um fastastjörnur og föruhnetti.  Hvirflarnir héldu þó ekki innreið sína við Hafnarháskóla fyrr en með ritum og kennslu Rasmusar Bartholin um og upp úr 1660.

Árið 1707 samdi Þorleifur Halldórsson latneska dispútatíu, De aplane  (Um festinguna; umfjöllun [sjá bls. 269]). Ritgerðin fjallaði meðal annars um sólmiðjukenninguna og hvirfla Descartes. Af yfirferðinni má sjá, að Þorleifur hefur gluggað í Systema cosmicum, latnesku útgáfuna af Dialogo Galíleós,  en virðist hins vegar ekki hafa lesið rit Descartes. Í umræðunni um hvirflana styðst Þorleifur í staðinn við verkið Institutio Philosophiae, Secundum Principia D. Renati Descartes (ensk þýðing) eftir Antoine Le Grand, sem mun hafa verið gríðarlega vinsæl kennslubók víða í Evrópu á þessum tíma:

Skýringarmynd úr Lögmálum heimspekinnar frá 1644. Descartes taldi að sérhver fastastjarna (t.d. S(ólin), D, L, F, f og Y ) hefði sinn eigin hvirfil og að reikistjörnur og halastjörnur væru dauðar sólir. Ræman á myndinni á að sýna feril halastjörnunnar N, upp og til hægri.  -  Í dispútatíunni Um festinguna frá 1707 segist Þorleifur Halldórsson vera sammála því „að einstakar fastastjörnur eigi sér vissan stað og stöðu fjarri hinum [þ.e.] að stakar fastastjörnur eigi sér eigin hvirfil.“ Hins vegar vill hann ekki fallast á þá skoðun, að „himinhvelum verði að fjölga til samræmis við stærð eða fjölda fastastjarna.“ Þorleifur telur einnig gagnrýnisvert að halda því fram, að fastastjörnuhvirflarnir séu köntóttir frekar en hring- eða hvellaga.

Í kenningu Descartes hefur sérhver reikistjarna sinn eigin hvirfil, sem er fastur í hinum risastóra sólarhvirfli. Þannig má til dæmis útskýra, hvers vegna tungl fylgja reikistjörnum sínum og snúast um þær.

Þyngdina útskýrir Descartes með því, að hvirfilhraðinn við yfirborð reikistjörnu sé mun meiri en snúningshraði hnattarins og miðflóttaaflið sé því meira í hvirflinum en á yfirborðinu. Sé hlut sleppt í vissri hæð er hraði hans, og þar af leiðandi miðflóttahneigð, minni en agnanna í hvirfilhreyfingunni í sömu hæð. Agnirnar þrýsta honum því niður þar til hann hann nær miðflóttajafnvægi við umhverfi sitt, sem gerist á yfirborðinu.

Þótt Descartes ætti sér dygga lærisveina og fylgismenn víða í hinum lærða heimi, fór smám saman að draga úr vinsældum kartesískrar náttúruspeki á fyrri helmingi átjándu aldar. Það var að sjálfsögðu vegna sívaxandi áhrifa Newtons, sem meðal annars hafði gagnrýnt kenningu Descartes á sannfærandi hátt í öðrum hluta Stærðfræðilögmála náttúruspek-innar.

Ýmsir fylgismenn hvirlakenningarinnar, einkum í Frakklandi, reyndu þó að koma í veg fyrir þessa þróun með því að betrumbæta kenninguna. Meðal þeirra, sem tóku þátt í þeirri vonlausu baráttu, voru menn eins og Huygens, Leibniz, Malebranche, Jacques Cassini og Johann Bernoulli.

Í lokin þetta: Eftirfarandi lýsingu á sólkerfinu er að finna í Náttúruskoðara Suhms (bls. 95-98):

Sólin er midt í vorum Sólveraldakransi, og hefur allt um kríng sig þessar 6 plánetur edur reikandi stjörnur, er svo heita: Mercúríus, Venus, Mars, Jördin vor med sinni einu fylgistjörnu Tunglinu, Júpíter med sínum fjórum fylgistjörnum og Satúrnus með sínum fimm. Sjálf stendur hún kyrr í midju þeirra, að fráteknu því, að hún veltist um kríng sjálfa sig, sem á ási léki, og dregur hinar adrar med ser í hríng í kríngum sig, hvörjar og þar ad auki veltast um á leidinni, og sú hin fyrri hræring þeirra gjörir árid hjá þeim, en sú sídari dag og nóttu; og á sama hátt draga þær aptur sínar fylgistjörnur med sér í kringum sig. Rafkrapturinn virdist ad vera nærsta hæfilegur ad útmála þetta.

Danski frumtextinn er frá árinu 1763 (þess vegna er Úranus ekki með í upptalningunni) og fyrir utan setninguna um rafkraftinn, má sjá greinileg áhrif frá hvirflakenningunni. Þetta á einnig við um byrjunina á neðanmálsgrein Jóns Jónssonar (bls. 96-97), sem styðst við bók Bastholms, Philosophie for Ulærde, frá 1787 (bls. 18-19). Jón segir og hefur eftir Bastholm:

Hvad því valdi ad sólin dregur pláneturnar í kríng um sig, er ad sönnu torsótt ad skilja, þó færir Basthólm þessa samlíkingu þar til: steinn í slöngu einni leitast á allar siddur ad fljúga út frá hendi manns, sem er hans midpúnktur. Þannig fylgir og plánetunum nockurskonar kraptur, ad flýja út frá sínum midpúnkti, sem er sólin. En þar er þá annar gagnstædur kraptur, sem heldur þeim aptur; og hvörr er hann? allir líkamir hafa einskonar krapt þann í ser ad draga hvörn annann til sín, t.d. þegar tveir dropar vatns snerta hvörr annann, hlaupa þeir saman í einn dropa. Tveir hnettir í sama vatni, draga hvörr annann til sín, seu þeir ecki oflángt hvörr frá ödrum. Þetta rís þó af vatninu, sem er í millum hnattanna, því annadhvört hljóta líkamirnir ad snerta hvörr annann fyrir medal eda medalslaust, skuli þeir hvörr annann til sín draga. Á þann hátt dregur hnötturinn þad næsta vatn til sín, þetta vatn aptur þad nærsta vatn ser, og s. fr. Þannig sýnist því varid um þá himnesku líkami. Þar er til, sem sagt er [í 3. neðanmálsgrein, bls. 11] rennandi ætheriskt efni, í hvörju sólin og allar hennar plánetur sveima. Sólin dregur þetta efni til sín, og þad aptur pláneturnar. Þegar þessi kraptur er jafnstór þeim kraptinum, sem drífa vill pláneturnar út frá sínum midpúnkti, hljóta þær vafalaust ad fljúga í kríngum sólina, eins og steinninn í slaungunni um kríng höndina.

Þarna er talað um miðflóttakraft og einnig um aðdráttarkraft, sem bendir til einhverrar þekkingar á aflfræði og jafnvel þyngdarfræði. Einnig voru fornar sem nýjar vangaveltur um vaka/straumefni stjörnuheimsins vel þekktar meðal náttúruspekinga á upplýsingaröld. Sú hugmynd, að sólin dragi kyrrstætt straumefnið til sín og það aftur reikistjörnunnar gæti verið túlkun Bastholms á vangaveltum L. Eulers um samband aðdráttarkrafts og vaka (sjá til dæmis 68. bréf Eulers til þýskrar prinsessu). Einna merkilegast við lýsinguna í heild er þó, að nafn Newtons kemur þar hvergi við sögu. En hvað sem því líður, þá er þetta í fyrsta sinn, sem fjallað er á prentaðri íslensku um eðlisfræðilega orsök fyrir snúningi reikistjarna um sólina.

Og þá er loksins komið að því að fjalla um Newton og lögmál hans. Það verður gert í næstu færslu.

 


* Stjarneðlisfræði og heimsfræði á Íslandi: Efnisyfirlit *


 

Birt í Átjánda öldin, Eðlisfræði, Nítjánda öldin, Sautjánda öld, Stærðfræði, Stjörnufræði

Stjarneðlisfræði og heimsfræði á Íslandi 2: Tímabilið 1780-1870 (a) Skólahald - alþýðufræðsla - tíðarandi

Yfirlit um greinaflokkinn

Eins og getið er um í inngangsorðum, hófst  alþýðufræðsla í raunvísindum og tækni hér á landi með útgáfu íslenskra upplýsingarmanna á Ritum þess (konunglega) íslenska Lærdómslistafélags í Kaupmannahöfn á árunum upp úr 1780. Þegar félagsritin gáfu upp laupana, hóf Magnús Stephensen útgáfu fræðslurita að Leirárgörðum og lengi vel var hann eini maðurinn hér á landi, sem reyndi að uppfræða alþýðuna um raunvísindaleg efni.

Sólmiðjukenningin náði fótfestu við Kaupmannahafnarháskóla fljótlega upp úr miðri sautjándu öld, einkum fyrir áhrif frá Descartes og lærisveinum hans. Sumir (sennilega flestir) íslenskir hafnarstúdentar kynntust kenningunni því í náminu eftir það, eins og til dæmis má sjá á latneskum dispútatíum þeirra Magnúsar Arasonar og Þorleifs Halldórssonar frá fyrsta áratug átjándu aldar. Lítið sem ekkert er þó vitað, hvort og þá hvernig vitneskja um sólmiðjukenninguna og aðrar nýjungar í stjörnufræði  barst til íslensks almennings fyrir 1780, en líklega hefur það gerst með dönskum alþýðuritum, eins og nefnt var í inngangi.

Franskur lærdómsmaður útskýrir gerð alheimsins fyrir ungri aðals-konu. Myndin er úr Entretiens sur la pluralité des mondes eftir B. de Fontenelle, vinsælasta alþýðuriti allra tíma um sólmiðjukenninguna. Bókin kom fyrst út 1686 og var fljótlega þýdd á öll helstu tungumál Evrópu (sjá einnig hér og hér). Hún kom á dönsku 1748 (og aftur 1764) í þýðingu F. C. Eilschov undir heitinu Samtaler Om Meer end een Verden, Imellem et Fruentimmer og en lærd Mand. Ekki er ólíklegt að einhverjir dönskulesandi Íslendingar hafi orðið fyrir áhrifum af þessari skemmtilegu og vel skrifuðu bók. Auk sólmiðjuheimsins fjallar hún um hvirflakenningu Descartes og hugmyndir um líf á öðrum hnöttum.

Íslensk umfjöllun um stjörnufræði og sólmiðjukenningu á síðustu ártatugum átjándu aldar var blönduð misjafnlega ítarlegum slitrum úr náttúruspeki Newtons, enda voru fræðsluritin yfirleitt þýdd úr dönsku eða byggð á dönskum fyrirmyndum. Sjálf voru dönsku ritin að mestu þýðingar úr öðrum tungumálum. Hugmyndafræði Newtons var þegar farin að smeygja sér inn í danska menningu skömmu eftir miðja átjándu öld og því var eðlilegt, að hún bærist smám saman til Íslands. Eins og bent verður á síðar í þessum færslum, voru fyrstu kynni íslenskrar alþýðu af kenningum Newtons talsvert lituð af hugmyndum Descartes, sem væntanlega hefur ekki auðveldað skilning á fræðunum. Þetta breyttist þegar líða tók á nítjándu öldina.

 

Skólar á Íslandi

Aðstæður á Íslandi á þessu tímabili voru ákaflega ólíkar því, sem við nú eigum að venjast. Íbúafjöldinn árið 1780 var um 50 þúsund og aðeins lítill hluti landsmanna bjó í þéttbýli. Harðindin, sem í garð gengu á níunda áratugnum, urðu til þess að íbúum fækkaði talsvert í bili, en á þriðja  áratug nítjándu aldar tók þeim aftir að fjölga. Árið 1870 var fjöldinn orðinn um 70 þúsund.

Í upphafi tímabilsins voru aðeins tveir skólar á landinu, Hólaskóli og Skálholtsskóli. Suðurlandsskjálftinn mikli árið 1784 og önnur óáran varð til þess að Skálholtsskóli var lagður niður og fluttur til Reykjavíkur, þar sem hann tók aftur til starfa 1786, nú undir nafninu Hólavallaskóli. Sextán árum síðar, árið 1802, var Hólaskóli einnig lagður niður og  sameinaður Hólavallaskóla. Af ýmsum ástæðum var aðstaðan til náms og kennslu í þessum alræmda skóla algjörlega óviðunandi og 1805 var ákveðið að leggja hann niður og stofna nýjan skóla á Bessastöðum. Á tímabilinu 1805 til 1846 var Bessastaðaskóli svo æðsta og jafnframt eina menntastofnunin á landinu.

Brynjólfskirkja í Skálholti og nálæg hús séð frá norðri árið 1772. Skálholtsskóli var sunnan kirkjunnar og sést því ekki á myndinni. Málverk eftir John Clevely Jr.

Allir þessir skólar stefndu fyrst og fremst að því að mennta menn til prests, en námið gagnaðist einnig sem undirbúningur fyrir frekara nám við Háskólann í Kaupmannahöfn. Engar raungreinar voru þó kenndar þar formlega og brýnustu undirstöðuatriði talnareiknings aðeins með höppum og glöppum. Það var ekki fyrr  en Björn Gunnlaugsson varð kennari við Bessastaðaskóla, árið 1822, sem stærðfræði (talnareikningur og rúmfræði) var formlega gerð að námsgrein í íslenskum skóla.

Þegar Bessastaðaskóli var fluttur til Reykjavíkur haustið 1846, var Björn Gunnlaugsson enn í fullu fjöri og það var hann, sem tók að sér kennsluna í eðlisfræði og stjörnufræði, auk stærðfræðinnar. Hann varð þannig fyrsti eiginlegi kennarinn í þessum fræðum á Íslandi. Um þau tímamót er nánar fjallað í eftirfarandi heimildum

Málverk Jóns Helgasonar af  Dómkirkjunni, Reykjavíkurskóla og umhverfi um 1850. Skólinn tók til starfa haustið 1846 og þar hófst í fyrsta sinn á Íslandi formleg kennsla í eðlisfræði (1846) og stjörnufræði (1853?). Sjá nánar hér. Sérstök áhersla var þó ekki lögð á þessar greinar fyrr en með stofnun stærðfræðideildarinnar haustið 1919.

Þess má geta hér, að fyrsti vísir að háskólanámi hérlendis hófst með stofnun Prestaskólans árið 1847. Læknaskólinn var svo stofnaður 1876 og Lagaskólinn 1908. Þessir embættismannaskólar voru að lokum sameinaðir undir hatti Háskóla Íslands árið 1911. Eins og minnst var á í inngangi hófst fyrrihlutanám í verkfræði þó ekki við skólann fyrr en 1940 og eiginlegt BS-nám í raunvísindum ekki fyrr en 1970. Allt frá siðaskiptum og vel fram eftir tuttugustu öldinni sóttu Íslendingar því þekkingu sína í raunvísindum til Kaupmannahafnar. Hafnarháskóli var þar í aðalhlutverki frá upphafi, en árið 1829 kom Fjöllistaskólinn einnig til sögunnar.

 

Hafnarháskóli

Raunvísindi upplýsingartímans tóku  að berast til Danmerkur fyrir alvöru um miðja 18. öld, nánar tiltekið 1753, þegar C. G. Kratzenstein var ráðinn prófessor í náttúruspeki (eðlisfræði og efnafræði) við Hafnarháskóla. Rúmum áratug fyrr hafði Hið konunglega danska vísindafélag reyndar verið stofnað fyrir áhrif frá upplýsingunni, en það var fyrst og fremst með Kratzenstein, sem nýir vindar tóku að blása í raunvísindum.

Fljótlega eftir komuna til Kaupmannhafnar gaf Kratzenstein út áhrifamikla kennsluók á latínu, Systema physicae experimentalis. Upp úr henni skrifaði hann síðar einfaldara yfirlitsrit á þýsku, Vorlesungen über die experimental Physik, sem kom í mörgum útgáfum á seinni hluta átjándu aldar og að lokum í danskri þýðingu árið 1791.

Kratzenstein fjallaði stuttlega um aflfræði Newtons í seinni útgáfum bókarinnar, en hann var jafnframt undir talsverðum áhrifum frá Descartes og hinni gömlu efnafræði (eldefniskenningunni). Það var fyrst og fremst stjörnufræðiprófessorinn T. Bugge, sem innleiddi hugmyndafræði Newtons í kennsluna, fyrst í stjörnufræðina 1777 og síðar í eðlisfræðina, sem hann kenndi að Kratzenstein látnum til 1806.

Eins og ítarlega er fjallað um í sérstakri færslu, sá H. C. Örsted um eðlisfræðikennsluna við Hafnarháskóla frá 1806 og við Fjöllistaskólann frá 1829. Þar innleiddi hann hugmyndafræði rómantísku náttúruspekinnar og Newton og hans fræðum var á vissan hátt ýtt til hliðar. Lærisveinn Örsteds,  C. V. Holten, sem tók við af honum árið 1851, hélt sig við svipaða stefnu í kennslunni og það var ekki fyrr en þeir C. Christiansen og P. K. Prytz tóku við eðlisfræðinni á áttunda  og níunda áratugnum, sem kennsla og rannsóknir í greininni færðust í nútímalegra horf í Danmörku.

C. Horrebow varð forstöðumaður stjörnuathugunarstöðvarinnar í Sívalaturni og prófessor í stjörnufræði við Háskólann árið 1753. Hann var dyggur fylgismaður Descartes og aðhylltist því sólmiðjukenninguna. Fyrirlestrar hans byggðust á eigin kennslubók frá 1762, Elementa astronomiae sphaericae in usum praelectionum conscripta (2. útgáfa, 1783).  Það vekur athygli, að í bókinni er aðeins minnst á Newton á einum stað og þá í tengslum við lögun jarðar.

Þeir Kratzenstein og Horrebow höfðu veruleg áhrif á ýmsa námsmenn, sem komu við sögu raunvísinda á Íslandi á upplýsingartímanum: Kratzenstein á þá Eggert Ólafsson, Bjarna Pálsson, Hannes Finnsson, Magnús Stephensen og Svein Pálsson - Horrebow á  Hannes Finnsson, Eyjólf Jónsson, Rasmus Lievog og að einhverju leyti á Stefán Björnsson (skv. rithöfundatali Ehrencron-Müllers (IV, bls. 150) var Stefán til dæmis andmælandi við eina af dispútatíum Horrebows um stjörnufræði).

Bugge tók við stjörnufræðinni af Horrebow árið 1777.  Eins og áður sagði, innleiddi hann eðlisfræði Newtons í kennsluna við Hafnarháskóla strax í upphafi ferilsins, en bók hans um stjörnufræði, sem byggð var á fyrirlestrum hans við skólann, De første Grunde til den sphæriske og theoretiske Astronomie, samt den mathematiske Geographie, kom ekki út fyrr en 1796. Þeir voru þó nokkrir, íslensku upplýsingarmennirnir, sem lærðu sína stjörnufræði hjá Bugge og  notuðu bók hans síðar til uppflettinga.

Það var svo aðalkennari Björns Gunnlaugssonar, H. C. Schumacher, sem tók við af Bugge árið 1815. Hann dvaldist þó löngum í Altona og í hans stað sáu þeir E. G. F. Thune og C. F. R. Olufsen að mestu um kennsluna í stjörnufræði.

Á þessari mynd frá 1845-50 gnæfir Sívaliturn yfir stúdentagarðinn Regensen. Á 19. öld bjuggu að meðaltali 4 til 5 íslenskir stúdentar á garðinum árlega. Linditréð til hægri var gróðursett 1785, um það leyti sem sagan, sem rakin er í þessum greinaflokki, hefst. Hin fræga stjörnuathuganastöð á þaki Sívalaturns, sem tók til starfa 1642, var lögð  niður 1861 og starfsemin flutt í þá nýbyggðan stjörnuturn við Östervold.

Olufsen var starfandi (extraordinær) prófessor í stjörnufræði við Hafnarháskóla frá 1832 og jafnframt forstöðumaður stjörnuathugunarstöðvarinnar í Sívalaturni. Þegar Schumacher lést 1850, var Olufsen fastráðinn, en dó sjálfur fimm árum síðar. Hans þektasta verk eru töflur, byggðar á nákvæmum útreikningum á göngu sólar. Íslendingar  þekkja hann þó fyrst og fremst fyrir það, að hann reiknaði íslenska almanakið frá upphafi, 1837, til dauðadags.

Að Olufsen látnum, tók Þjóverjinn H. L. d'Arrest við sem prófessor í stjörnufræði í Kaupmannahöfn. Hann var framúrskarandi stjörnufræðingur og er nú einna þekktastur fyrir að finna reikistjörnuna Neptúnus árið 1846. Það afrek vann hann í Berlín ásamt samstarfsmanni sínum, J. G. Galle, eftir ábendingar frá hinum fræga U. Le Verrier.

Þau tímamót urðu á starfsárum d'Arrest í Kaupmannahöfn, að 1861 var tekin í notkun ný stjörnuathugunarstöð við Östervold, sem þá var í útjaðri borgarinnar.  Þar var fyrsti forstöðumaðurinn H. C. F. C. Schjellerup, en hann tók meðal annars við af Olufsen sem reiknimeistari íslenska almanaksins frá 1858 til 1888.

Stjörnuathunarstöðin á Östervold, sem tekin var í notkun árið 1861. Þarna fékk Steinþór Sigurðsson stjörnufræðingur þjálfun hjá kennara sínum, prófessor Elis Strömgren, á þriðja áratug tuttugustu aldar.  Teikning: Illustreret Tidende.

 

Alþýðurit á íslensku

Þá er loksins komið að því að líta nánar á fyrstu íslensku fræðsluritin um þau fræði, sem eru viðfangsefni þessara pistla. Hér fyrir neðan er skrá yfir flest, ef ekki öll slík rit, sem komu á prenti á árunum 1780 til 1870 (skrána má einnig finna hér.). Verkin  fjalla annaðhvort um hina vísindalegu heimsmynd, eða taka fyrir þætti, sem líta má á sem hluta af hefðbundinni stjarneðlisfræði. Þar er því hvorki að finna almanök né rímbækur. Ekki heldur skýrslur um mælingar af því tagi, sem Rasmus Lievog stundaði í Lambhúsum í upphafi tímabilsins, eða rit um staðarákvarðanir, strandmælingar og landmælingar.

Lesendum til þæginda eru settir tenglar í öll verkin í skránni og áhugasamir eru eindregið hvattir til að kynna sér að minnsta kosti einhver þeirra. Þau eru flest mun áhugaverðari en margir kynnu að halda.

Í þessum pistlum verður hvorki  rætt um efni ritanna, né almennt um  þau þekkingaratriði, sem þar koma við sögu. Í staðinn verður lögð sérstök áhersla á að fjalla um þætti, sem að mati færsluhöfundar  skipta mestu máli hverju sinni. Á tímabilinu 1780 til 1870 er það einkum tvennt, sem stendur upp úr: Annars vegar umfjöllunin um þyngdarlögmálið og notkun þess til að útskýra ýmis fyrirbæri  á jörðu sem á himni. Hins vegar nýjar hugmyndir um gerð og þróun alheimsins og athuganir þeim tengdar.  Fyrra atriðið verður tekið nánar fyrir í færslum 2b og 2c og hið síðara í færslu 2d.  -  En hér kemur skráin:

Alþýðurit um stjarneðlisfræði og heimsfræði 1780-1870:

  1. A. F. Büsching, 1782: Um himininn og Um jørdina. Fyrstu tveir kaflarnir í Undirvisan í Náttúruhistoriunni fyrir þá, sem annathvert alz eckert edr lítit vita af henni. Guðmundur Þorgrímsson þýddi. Rit þess Islenzka Lærdóms-Lista Felags, Annat Bindini, bls. 232-244.
  2. Magnús Stephensen, 1783: Um meteora, edr Vedráttufar, Loptsjónir og adra náttúrliga tilburdi á sió og landi. Rit þess Islenzka Lærdóms-Lista Felags, Þridja Bindini, bls. 122-192.
  3. Hannes Finnsson, 1797: Um hala-stjørnur. Qvøld-vøkurnar 1794 -  Sidari Parturinn, bls. 45-58.
  4. Magnús Stephensen, 1797: Alstyrndi Himininn og  Vorir Sólheimar. Skémtileg Vina-Gledi í fróðlegum Samrædum og Liódmælum, I. Bindinni, bls. 28-69.
  5. P. F. Suhm, 1798: Heimsins Bygging. Fyrri hluti ritsins Sá gudlega þenkjandi Náttúru-skoðari, þad er Hugleiding yfir Byggíngu Heimsins, edur Handaverk Guds á Himni og Jørðu. Asamt annari Hugleidingu um Dygdina, Bls. 1-140  (stjörnufræðin  er á bls. 95-123). Þýðandi Jón Jónsson, sem jafnframt samdi neðanmálsgreinar.
  6. Gunnlaugur Oddsson, Grímur Jónsson og Þórður Sveinbjörnsson, 1821:  Almenn landaskipunarfrædi. Fyrri partrinn, bls. 3 - 77.
  7. Björn Gunnlaugsson, 1828: Nockrar einfaldar Reglur til að útreikna Túnglsins Gáng. Solemnia scholastica ad celebrandum diem XXVIII Januarii MDCCCXXVIII regi norstro augustissimo Frederico Sexto natalem habenda die III Februarii MDCCCXXVIII hocce libello indicunt Scholæ Bessastadensis magistri.
  8. Jónas Hallgrímsson, 1835: Um eðli og uppruna jarðarinnar. Fjölnir, 1, bls. 99-136.
  9. Björn Gunnlaugsson, 1836: Tøblur yfir Sólaruppkomu, Sólarlag, Dögun og Dagsetur fyrir þrjá Islands jafnfarabauga: vid  64o  65o  66o  og Sjóndeildarhringsins Geislabrot 32'50". Skóla-hátíd í Minníngu Fædíngardags vors allranádugasta Konúngs Fridriks Sjøtta, þann 28. Janúaríí 1836, er haldin verdur þann 31ta Janúaríí 1836, bodud af Kénnurum Bessastada Skóla.
  10. Björn Gunnlaugsson, 1842: Njóla, edur audveld skodun himinsins, med þar af fljótandi hugleidíngum um hátign Guds og alheims áformid, eda hans tilgáng med heiminn. Bodsrit til ad hlusta á Þá opinberu yfirheyrslu í Bessastada Skóla þann 23-28 Maji 1842, bls. 5-105. Ljóðið kom út aftur 1853 örlítið breytt og í þriðja sinn 1884.
  11. G. F. Ursin, 1842: Stjörnufrædi, ljett og handa alþídu. Þýðing Jónasar Hallgrímssonar á bókinni Populært Foredrag over Astronomien frá 1838. Sjá einnig grein Bjarna Vilhjálmssonar, 1944: Nýyrði í Stjörnufræði Ursins.
  12. C. A. Schumacher, 1843: Um flóð og fjöru. Fjölnir, 6, bls. 44-54. Þýðandi Jónas Hallgrímsson, sem jafnframt samdi síðasta hluta greinarinnar.
  13. Björn Gunnlaugsson, 1845-46:  Leiðarvísir til að þekkja stjörnur. Fyrri parturinn. Sidari parturinn. Bodsrit [...] Bessastadaskóla [...] 1845 (bls. 1-68) og 1846 (bls. 1-99).
  14. Björn Gunnlaugsson, 1849: Um þýngd reikistjarnanna (pláneta). Reykjavíkurpósturinn, 3, Nr. 4, bls. 62-65.
  15. J. G. Fischer, 1852: Eðlisfræði. Þýðandi Magnús Grímsson. Sjá nánari umfjöllun í þessari færslu.
  16. Jón Thorlacíus, 1855: Stundatal eptir stjörnum og tungli. Sjá umsögn Björns Gunnlaugssonar um verkið í Þjóðólfi 1858.
  17. Björn Gunnlaugsson, 1858: Halastjarnan 1858. Sjá einnig hér.
  18. Páll Sveinsson, 1860: Alheimurinn. Ný sumargjöf, 2, bls. 90-100.

Íslenskt baðstofulíf á nítjándu öld. Teikningin er sennilega eftir danska listamanninn A. Schiøtt og frá árinu 1861. Ég get vel ímyndað mér, að ungi maðurinn á myndinni sé annaðhvort að glugga í Stjörnufræði Ursins eða Njólu Björns Gunnlaugssonar.

Áður en lengra er haldið og farið að ræða um áhrif Newtons og lærisveina hans á þróun stjarnvísinda, er við hæfi að fara nokkrum orðum um sólmiðjukenninginguna og hvernig fjallað var um hana í fyrstu íslensku fræðsluritunum. Jafnframt verður minnst á nokkur önnur atriði, sem lítil áhersla verður lögð á í síðari færslum.

Eftir því, sem ég veit best, var fyrst minnst á  sólmiðjuheiminn á prenti í upphafi  bókar Büschings um Náttúruhistoríuna frá 1782 (sjá ritaskrána). Þar segir meðal annars á bls. 238-39:

Bæði jörðin og túnglit eru medal [...] Pláneta; þiggja allar þessar siö ad tölu hita og birtu af sólunni. Þess er eigi getit í heilagri ritningu hvört jörd gángi um kríng sólu, edr sól um kríng jördu, hún er eigi helldr ritut til ad fræda menn á þessháttar vísindum; og þótt hún á ymsum stödum greini nockut þarum, er þat ætid eptir mannligu áliti med almennum talsháttum framsett.

Á því er einginn efi, at Pláneturnar Saturnus, Jupiter, Mars, Venus og Mercurius hlaupa í stórum hríng umhverfis sólina. Þat er og trúligt at jördin og túnglit gángi um kríng hana, og at hún sé í midju þeirra allra.

Síðar (á bls. 240) kemur jafnframt fram, að „jarðarhnötturinn snýst um kríng sjálfan sig, sem hann léki á ási, á 24 kluckustundum.“ Sem kunnugt er, var þetta mikilvægt atriði í kenningu Kóperníkusar.

Íslenska þýðingin á bók Büschings er byggð á danskri þýðingu frá 1778, sem aftur er byggð á þýsku frumútgáfunni frá 1776. Það vekur nokkra athygli nútímannsins, hversu varlega höfundurinn talar um sólmiðjuhugmyndina. En eins og  nánar er fjallað um hér að neðan, gefur þessi framsetning fyrst og fremst hugmynd um tíðarandann í lok átjándu aldar.  -  Á textanum má einnig sjá, að ekki  hefur gefist tími til að koma upplýsingum um  fund Úranusar (árið 1781) inn í íslensku þýðinguna.

Í ritgerðum Magnúsar Stephensen frá 1797 er sólmiðjukenningin einnig til umræðu. Eftir fjörugar rökræður um jarðmiðjuhugmyndina í Alstirnda himninum segir á bls. 40:

Hin meiningin um jardarinnar gáng og kyrrd sólar er nú ekki einúngis af lærdum mönnum vídast um heiminn vidtekin, eins af mestu gudfrædismönnum, heldur og stadfesta hana árlega allra stjörnuvísra athugasemdir og reikníngar [...] svo ecki hallar drycklángri stundu, hvad annars mundi torsótt edur ómögulegt.

og í Vorum sólheimum segir Magnús á bls. 56-57:

Sólin uppljómar auk túngls og halastjarna 7 heima edur himinhnetti, er kallast plánetur og gánga allar kríngum hana í aflaungum hríngum, hvör fyrir utan adra. [...] Vor jörd [gengur í] kríngum sólina í 365¼ dags, sem giörir vort ár."

og á bls. 59:

Þó ecki séu nú fleiri plánetur vorra Sólheima enn fundnar, hafa þó stjörnufróðir mikla trú um að þær muni enn fleiri vera, þar á mót hafa þeir fundid ýmisleg túngl.

Þarna kemur meðal annars fram, að Magnús veit að brautir reikistjarnanna eru aflangir hringir og að halastjörnur eru hluti af sólkerfinu. Sem kunnugt er má  rekja fyrri niðurstöðuna til Keplers og hina síðari til Newtons. Svipaðar, en heldur nákvæmari, upplýsingar er að finna í hugvekju Hannesar Finnssonar, Um halastjörnur, frá 1797.

Það vekur athygli, að hvorki Hannes né Magnús, hvað þá Büsching, nefna þá Kepler og Newton á nafn, né heldur geta höfundarnir heimilda. Þó má sjá af  blöðum, sem varðveist hafa frá Kaupmannahafnarárum Íslendinganna, að fjallað var þessa merku náttúruspekinga og verk þeirra í kennslunni, bæði hjá Horrebow (sjá Lbs. 99, 8vo, frá um 1760) og Bugge (sjá Lbs. 592, 4to, frá 1783).

Höfundarnir hafa væntanlega stuðst við eina eða fleiri kennslubækur, sem og önnur fræðslurit, við skriftirnar, eins og almennt tíðkast við samningu alþýðurita um raunvísindi. Ítarlegra heimilda er sjaldan getið í slíkum ritum, enda fjalla þau yfirleitt um hugmyndir og athuganir, sem eru þegar vel þekktar meðal fræðimanna.  Skemmtileg undantekning frá reglunni, eru hinar merku neðanmálsgreinar  Jóns Jónssonar við þýðinguna á ritgerðum Suhms. Þar gætir Jón þess vandlega að geta ávallt heimilda, máli sínu til stuðnings.

En áfram með umfjöllunina um sólmiðjukenninguna. Í Náttúruskoðara frá 1798 (danska frumgerðin er frá 1763), segir á bls. 95-98:

Sólin er midt í vorum Sólveraldakransi, og hefur allt um kríng sig þessar 6 plánetur edur reikandi stjörnur, er svo heita: Mercúríus, Venus, Mars, Jördin vor med sinni einu fylgistjörnu Tunglinu, Júpíter med sínum fjórum fylgistjörnum og Satúrnus með sínum fimm.* Sjálf stendur hún kyrr í miðju þeirra, ad fráteknu því, ad hún veltist um kríng sjálfa sig, sem á ási léki, og dregur hinar adrar med sér í hríng í kríngum sig, hvörjar og þar ad auki veltast um á leidinni, og sú hin fyrri hræring þeirra gjörir árid hjá þeim, en sú sídari dag og nótt; og á sama hátt draga þær aptur sínar fylgistjörnur med sér og kríngum sig. Rafkrapturinn virdist ad vera nærsta hæfilegur ad útmála þetta.

[*Neðanmálsgrein Jóns: Fyrir utan hér taldar 6 höfuðplánetur, sem gánga kríngum vora sólu, fann Herschel árið 1781 þá sjöundu plánetu, sem Stjörnumeistarar nefna Uran, hvör ed hefir einúngis tvær fylgistjörnur edur túngl, sem enn er vart vid ordid.]

Þetta er hin sæmilegasta lýsing á sólkerfinu og sólmiðjukenningunni, auk þess sem þarna kemur fram hugmynd um rafkraftinn sem hreyfiafl í sólkerfinu. Mér er ekki kunnugt um, að áður hafi verið ýjað að því á prenti á íslensku, að útskýra megi hreyfingu reikistjarnanna um sólina með því, að möndulsnúningur sólar dragi þær með sér. Þessa hugmynd, sem rekja má allar götur til Descartes (og Keplers á undan honum) tekur Jón ítarlega fyrir í fróðlegri neðanmálsgrein á bls. 96-98. Nánari umfjöllun um hana verður þó að bíða færslna  2b og 2c, en þar verður rætt um áhrif þyngdarinnar í sólkerfinu.

 

Náttúruguðfræði og byggð á himintunglum

Ekki þarf að lesa lengi í fyrrnefndum alþýðuritunum til að átta sig á stöðugri nærveru hins almáttuga Guðs í heimi höfundanna.  Á þessum tíma var Guð kristinna manna mikilvægur hluti af daglegu lífi Vesturlandabúa - þar var hann yfir og allt um kring og því órjúfanlegur hluti af heimsmyndinni.

Í þessum greinaflokki verður að mestu horft fram hjá þeirri samtvinnun trúar og vísinda, sem var svo mikilvæg í menningu Vesturlanda allt fram á seinni hluta nítjándu aldar og í sumum tilvikum langt fram á þá tuttugustu. Það er ekki vegna áhugaleysis, heldur fyrst og fremst af þeim sökum, að litlar rannsóknir hafa enn farið fram hér á landi á þessu umfangsmikla og flókna viðfangsefni. Eftir því sem best verður séð, er þarna kjörinn vettvangur fyrir fleiri en eina meistararitgerð, ef ekki doktorsritgerðir við íslenska háskóla.

Hér verður því látið nægja að birta nokkrar tilvitnanir í ritin á listanum að framan. Umfjöllunin um veröldina, sérstaklega í elstu ritunum, fellur þar víðast hvar undir svokallaða náttúruguðfræði. Jón Jónsson lýsir þessu viðhorfi ágætlega í inngangsorðum að þýðingu sinni á Náttúruskoðara Suhms á bls. vii-viii:

Því hvört er efni og adalaugnamid sannkalladrar Heimsspeki annad enn med sannfærandi röksemdum, byggdum first og fremst á ótáldrægri ransókn náttúrunnar, og því nærst á skynseminar egin, þar út af dregnum ályktunum, ad sýna, hvörsu þad hlýtur að vera, ein almáttug, alvitur og algód Vera, sem skapad, nidurradad og áquardad hafi öllum hlutum, smáum og stórum í því ofur vídlenda ríki náttúrunnar?

Í megintexta bókarinnar segir Suhm á bls. 3:

Þad er þess vegna óraskanlegur sannleikur, ad þess meiri þeckingu, sem hvörr einn hefir á náttúrufrædinni, því stærri faung hefir hann á ad þeckja Guds dírdlegu eginlegleika.

Líta má á svokallaða tilgangsspeki eða markhyggju, sem stundum er einnig kennd við skipulagsrök, sem hluta af náttúruguðfræði. Dæmi um slíka speki er að finna í inngangi að Eðlisfræði Fischers. Þar segir á bls. 5:

Enginn getur skoðað hina dásamlegu smíð á auga mannsins, né athugað þau allsherjarlög, sem allt hið skapaða er bundið, og sem allir hnettir hlýða og renna eptir um alla eilífð, og reglu þá og skipulag, sem þar birtist hvervetna í, án þess að hrífast af lotningu fyrir honum, sem er upphaf og stjórnari alls þessa, sem var, er og verður, sem hið mikla sálmaskáld fer þessum orðum um: himnarnir segja frá dýrð hans, og hin útþanda festíng sýnir hans handaverk.

Og í skýringum Björns Gunnlaugssonar við Njólu má finna þessi fleygu orð:

Sú mikla himinsins byggíng bodar einhvörja stóra fyrirætlan. En í öllu, sem vér sjáum á himni og jördu, er lífid það ædsta, og allt er þessvegna gjört, og þad er adaltilgangur alls hins sýnilega heims [...] Þannig væri þá heimurinn einskisvirdi, ef ekki væri lífid, þá flýtur þar af, að þad er Guds adalverk, og þetta hans adalverk verdur eilíft að vera.

Björn Gunnlaugsson, sjötíu og eins árs 1859. Hann var ekki aðeins fremsti stærðfræðingur, stjörnu-fræðingur og eðlisfræðingur Íslendinga um sína daga, heldur áhrifamikill náttúruguðfræðingur. Teikningin er eftir Sigurð Guðmundsson.

Næst á eftir Biblíunni, var Njóla sennilega eitt víðlesnasta rit á Íslandi um og upp úr miðri 19. öld. Hér má sjá forsíðu 3. útgáfunnar frá 1884. Verkið kom fyrst á prenti 1842 og aftur örlítið breytt 1853. Sjá nánar hér.

Vangaveltur um líf á öðrum hnöttum, og þá sér í lagi vitsmunalíf, virðist hafa fylgt mannkyninu í árþúsundir. Menn hafa þó yfirleitt skiptst í tvær fylkingar, með og á móti. Til dæmis voru  atómhyggjumenn eins og Levkippos (5. öld f.o.t.),  Demókrítos (4. öld f.o.t.) og Lukretíus (1. öld f.o.t.) fylgjandi hugmyndinni, en frumkristnir söfnuðir henni andsnúnir, einkum vegna áhrifa frá Platóni (5.-4. öld f.o.t.) og Aristótelesi (4. öld f.o.t.).

Á síðmiðöldum var efnið talsvert til umræðu meðal kristinna lærdómsmanna, en það var þó ekki fyrr en sólmiðjukenningin tók að ryðja sér til rúms á Vesturlöndum á sautjándu öld, sem hugmyndin um byggð á himinhnöttum fékk byr undir báða vængi meðal lærðra sem  leikra. Sú bók, sem sennilega hafði þar mest áhrif, var bók Fontenelles,  Entretiens sur la pluralité des mondes, sem kom fyrst úr 1686 og rætt var um í myndatexta í inngangi.

Eins og flest annað á þessum tíma, bárust hugmyndir um stjörnubúa hingað til lands í gegnum Kaupmannahöfn. Strax í fyrsta prentaða alþýðuritinu um raunvísindi, Náttúruhistoríu Büschings, segir eftir stutta umfjöllun um tunglsljósið á bls. 243:

Jördin endrgeldr ríkuliga túnglinu sína þjónkan, er hún sýniz mánabúum fiórtán sinnum stærri en tunglit sýniz oss, og kastar á þat þeim mun meira liósi.

En það er fyrst og fremst Magnús Stephensen, sem upphaflega tekur að sér að prédika þennan boðskap:

Allir hnettir og eins siálf sólin og halastiörnur eru því fullar af ýmislegum lifandi sképnum, en líklega miög svo ólíkum oss og vorrar jardar sképnum, eptir þeirra bústada ólíku edli. […] Hvad [Gud] lætur í náttúrunni lióma fyrir augum þeirra skynsömu sképna sinna, á ad minna þær á ad prísa án afláts þessa hátign, ad audmýkia sig fyrir henni, ad hlýdnast henni, ad elska hana fram yfir allt.  (Alstirndi himininn, bls. 50.)

Líf á tunglinu

Þessi mynd birtist í bandaríska dagblaðinu The Sun árið 1835. Hún á að sýna lífið á tunglinu.

Fullvissan um vitsmunalíf á öðrum himintunglum er á þessum tíma óhjákvæmilega tengd náttúruguðfræði. Eða eins og Suhm segir í Náttúruskoðara, bls. 116-117:

Guds eiginleikar eru öldungis fullkomnir, og án alls enda: þeir, sem þá neita því ad þar séu til sképnur, já skynjandi sképnur í öllum reykandi stjörnum þeckia annadhvört ecki Guds eiginnlegleika, og syndga því af fávitsku edur, ef þeir þeckja þá, eru þeir í hærsta máta sekir um spott Guds hátignar.

Og á bls. 122:

Allar þessar föstu stjörnur hljóta án mótmæla sólir ad vera, sem hafa ljós sitt af sjálfum sér, því annars kynnu þær í þvílíkri fjarlægd ei af oss sjenar ad verda; og af því þær geta ei til ónýtis skapadar verid, hljóta þær efunarlaust, ein og sérhvör, ad hafa plánetur um kríng sig.

Björn Gunnlaugsson er sama sinnis og Suhm í þessu efni og í einum af síðustu köflum Njólu, sem kallast  „Byggð í stjörnum“ (bls. 94-96), eru þessi erindi:

Hvad oss stoda stjörnur þær,
er standa svo lángt burtu,
ad augna sjónin ei þeim nær,
og þó lýsa þurftu?

...

Víst á þessi fagri fans
fyrir sképnum lýsa,
skæra' er mildi Skaparans
skulu med oss prísa.

Lýsa mun því sérhvör sól
sínum plánetunum,
hvar líf-skarar breitin ból
byggja' á upphverfunum.

...

Stjörnubúar þessir þar
þannig sig til reidi
undir kjörin eilífdar,
á lífs tíma skeiði.

Í lokin er rétt að vitna í einn af stjörnufræðingum þessa tíma, sem ekki er jafn sannfærður og framangreindir höfundar um tilvist vitsmunalífs utan jarðarinnar. Ekki er ólíklegt, að flestir nútíma stjarnvísindamenn gætu tekið undir með Georg Frederik Ursin, þegar hann segir í Stjörnufræði sinni á bls. 13-14:

Þegar vjer loksins rædum  um þad, hvurt  himintúnglin munu biggd vera, þá höfum vjer ekkjert þad sjed, er vjer  fáum rádid þad af. En vjer trúum því og trú vor um þetta efni er risin med öllu af ödrum ástædum, enn þeim, er leida oss  til sanninda stjörnufrædinnar. Og nú gjetid þjer sjálfir metid gildi þess, er  vjer  höfum heirt rædt um himintúnglabúa, til ad minda mánamenn, og störf þeirra og allar athafnir. Ekkjert af slíku hefir nokkur madur sjed í túngli voru, og er þad þó láng næst oss allra himintúngla.  [...]  Jeg lasta á aungvan hátt vidburdi annara manna, ad komast ad raun um  allt slíkt  [...] enn illt  er til hins ad  vita, ad margur sá er gjekk ad því starfi, var um of bundinn vid ímindanir þær og eptirvæntingar, er hann var búinn ad skapa sjer sjálfur firirfram og er þá hætt vid, ad margt þat er þeir sáu hafi hvurgi átt sjer stad nema í huga þeirra.


* Stjarneðlisfræði og heimsfræði á Íslandi: Efnisyfirlit *


 

 

Birt í Átjánda öldin, Eðlisfræði, Nítjánda öld, Stjörnufræði

Stjarneðlisfræði og heimsfræði: Úrval alþýðurita á íslensku 1780-1960

Þessi skrá er enn í vinnslu og verður uppfærð eftir þörfum

 

I. Tímabilið 1780-1870

  1. Büsching, A.F., 1782: Um himininn og Um jørdina. Fyrstu tveir kaflarnir í Undirvisan í Náttúruhistoriunni fyrir þá, sem annathvert alz eckert edr lítit vita af henni. Guðmundur Þorgrímsson þýddi. Rit þess Islenzka Lærdóms-Lista Felags, Annat Bindini, bls. 232-244.
  2. Magnús Stephensen, 1783: Um meteora, edr Vedráttufar, Loptsjónir og adra náttúrliga tilburdi á sió og landi. Rit þess Islenzka Lærdóms-Lista Felags, Þridja Bindini, bls. 122-192.
  3. Hannes Finnsson, 1797: Um hala-stjørnur. Qvøld-vøkurnar 1794 -  Sidari Parturinn, bls. 45-58.
  4. Magnús Stephensen, 1797: Alstyrndi Himininn og  Vorir Sólheimar. Skémtileg Vina-Gledi í fróðlegum Samrædum og Liódmælum, I. Bindinni, bls. 28-69.
  5. Suhm, P.F., 1798: Heimsins Bygging. Fyrri hluti ritsins Sá gudlega þenkjandi Náttúru-skoðari, þad er Hugleiding yfir Byggíngu Heimsins, edur Handaverk Guds á Himni og Jørðu. Asamt annari Hugleidingu um Dygdina, Bls. 1-140. Þýðandi Jón Jónsson, sem jafnframt samdi neðanmálsgreinar.
  6. Gunnlaugur Oddsson, Grímur Jónsson og Þórður Sveinbjörnsson, 1821:  Almenn landaskipunarfrædi. Fyrri partrinn, bls. 3 - 77.
  7. Björn Gunnlaugsson, 1828: Nockrar einfaldar Reglur til að útreikna Túnglsins Gáng. Solemnia scholastica ad celebrandum diem XXVIII Januarii MDCCCXXVIII regi norstro augustissimo Frederico Sexto natalem habenda die III Februarii MDCCCXXVIII hocce libello indicunt Scholæ Bessastadensis magistri.
  8. Jónas Hallgrímsson, 1835: Um eðli og uppruna jarðarinnar. Fjölnir, 1, bls. 99-136.
  9. Björn Gunnlaugsson, 1836: Tøblur yfir Sólaruppkomu, Sólarlag, Dögun og Dagsetur fyrir þrjá Islands jafnfarabauga: vid  64o  65o  66o  og Sjóndeildarhringsins Geislabrot 32' 50". Skóla-hátíd í Minníngu Fædíngardags vors allranádugasta Konúngs Fridriks Sjøtta, þann 28. Janúaríí 1836, er haldin verdur þann 31ta Janúaríí 1836, bodud af Kénnurum Bessastada Skóla.
  10. Björn Gunnlaugsson, 1842: Njóla, edur audveld skodun himinsins, med þar af fljótandi hugleidíngum um hátign Guds og alheims áformid, eda hans tilgáng med heiminn. Bodsrit til ad hlusta á Þá opinberu yfirheyrslu í Bessastada Skóla þann 23-28 Maji 1842, bls. 5-105. Ljóðið kom út aftur 1853 örlítið breytt og í þriðja sinn 1884.
  11. Ursin, G.F., 1842: Stjörnufrædi, ljett og handa alþídu. Þýðing Jónasar Hallgrímssonar á bókinni Populært Foredrag over Astronomien frá 1838. Endurprentuð í safninu Ritverk Jónasar Hallgrímssonar III. Ritstj. Haukur Hannesson, Páll Valsson og Sveinn Yngvi Egilsson. Reykjavík 1989, bls. 315-536. Myndir og skýringar eru í IV. bindi, bls. 526-531. Sjá einnig grein Bjarna Vilhjálmssonar, 1944: Nýyrði í Stjörnufræði Ursins.
  12. Schumacher, C.A., 1843: Um flóð og fjöru. Fjölnir, 6, bls. 44-54. Þýðandi Jónas Hallgrímsson, sem jafnframt samdi síðasta hluta greinarinnar.
  13. Björn Gunnlaugsson, 1845-46:  Leiðarvísir til að þekkja stjörnur. Fyrri parturinn. Sidari parturinn. Bodsrit [...] Bessastadaskóla [...] 1845 (bls. 1-68) og 1846 (bls. 1-99).
  14. Björn Gunnlaugsson, 1849: Um þýngd reikistjarnanna (pláneta). Reykjavíkurpósturinn, 3, Nr. 4, bls. 62-65.
  15. Fischer, J.G., 1852: Eðlisfræði. Þýðandi Magnús Grímsson. Sjá nánari umfjöllun í þessari færslu.
  16. Jón Thorlacíus, 1855: Stundatal eptir stjörnum og tungli. Sjá umsögn Björns Gunnlaugssonar um verkið í Þjóðólfi 1858.
  17. Björn Gunnlaugsson, 1858: Halastjarnan 1858. Sjá einnig hér.
  18. Páll Sveinsson, 1860: Alheimurinn. Ný sumargjöf, 2, bls. 90-100.

II. Tímabilið 1870-1930

  1. Anon, 1870: Lítið eitt um samband náttúrukraftanna. Þýtt úr Tidsskrift for populaire Fremstillinger af Naturvidenskaben.
  2. Flamarion, C., 1871: Alheimsvíðáttan. Þýtt úr bókinni Beboede Verdener frá 1867, danskri þýðingu á La Pluralité des Mondes habités frá 1862.
  3. Benedikt Gröndal, 1872: Tíminn. Um sólina og ljósið, bls. 28- 36.
  4. Þórarinn Böðvarsson, 1874: Lestrarbók handa alþýðu á Íslandi. Kaupmannahöfn 1874. Um heiminn, bls. 131-145. Að talsverðu leyti  sniðin eftir bók P. Hjort, 1858: Den Danske Børneven, En Læsebog for Borger- og Almue-Skoler. (6. útg.)
  5. Anon, 1878: Uppgötvan Leverriers I, II. Þýtt úr dönsku.
  6. Benedikt Gröndal, 1878: Steinafræði og jarðarfræði. Reykjavík 1878. Um litrófsgreiningu, bls. 36-37.
  7. Þorvaldur Thoroddsen, 1880: Nokkur orð um jarðfræði. Um þokukenninguna, bls. 66-67. Um sólina bls. 67-68.
  8. Þorvaldur Thoroddsen, 1882: Sólin og ljósið.
  9. Þorvaldur Thoroddsen, 1883: Halastjörnur og stjörnuhröp.
  10. Páll Jónsson, 1883: Nokkur orð um stjörnufræði og stjörnur I, II, III, IV. Að nokkru leyti útlagt úr Naturens Vidundere, danskri þýðingu á L'Univers les infiniment grands et les infiniment petits eftir F. A. Pouchet.
  11. Þorvaldur Thoroddsen, 1885: Smágreinir. Um nýja stjörnu í Andrómedu, bls. 263-64. Um nýjan stjörnuturn í Nice, bls. 264-65.
  12. Anon, 1885: Um sólina. Þýtt.
  13. Þorvaldur Thoroddsen, 1886: Smágreinir.  Um Andrómedítana 1885, bls. 302-303.
  14. Anon., 1887: Störnuturninn á Hamiltonfjalli.
  15. Þorvaldur Thoroddsen, 1888: Smágreinir. Um Júpíter, bls. 126-128.
  16. Björn Jensson, 1889: Stjörnufræði. Sniðin eptir Chamber’s Instruction for the people . Í bókaflokknum Sjálfsfræðarinn. Ritstj.: Björn Jensson og Jón Ólafsson. Reykjavík 1889. Sjá: Chambers's Information for the People, ed. by W. and R. Chambers, Fifth Edition, Volume 1, 1874, bls. 1-16.
  17. De Parville, H., 1891-93: Hvers vegna?–Vegna þess! Spurningakver náttúruvísindanna. Guðmundur Magnússon þýddi. Kaupmannahöfn 1891-93.
  18. Anon, 1893 : Ljósrannsókn (spectralanalysis).
  19. Flammarion, C., 1894: Alheimsvíðáttan. Úr tímaritinu L'Astronomie.
  20. Flammarion, C., 1896: Undraverða augað. Úr tímaritinu Cosmopolitan.
  21. Flammarion, C., 1898: Ljósmyndan af himinhvolfinu I, II, III og IV. Úr tímaritinu La Lecture.
  22. Flammarion, C., 1898: Úranía. Kaupmannahöfn 1898. Þýðing Björns Bjarnasonar á bókinni Uranie frá 1889.
  23. Anon, 1898: Endimörk alheimsins. Þýtt og endursagt.
  24. Stfán Runólfsson, 1899: Er hiti sólarinnar óþrotlegur?  Þýtt úr Vor Jord (Frem).
  25. Ball, R., 1905: Tvístjörnur. Magnús Stephensen þýddi.
  26. Ólafur Dan Daníelsson, 1905: Hvernig loftskeyti berast.
  27. Ágúst H. Bjarnason, 1906: Yfirlit yfir sögu mannsandans: Nítjánda öldin. Reykjavík 1906. Fjallað er um uppruna sólkerfanna í kafla V.4 og ævisögu jarðarinnar í kafla V.5.
  28. Þorvaldur Thoroddsen, 1910: Vísindalegar nýjungar og stefnubreytingar nútímans I, II, III.
  29. Ólafur Dan Daníelsson: Ýmsar skoðanir á eðli rúmsins.
  30. Sigurður Þórólfsson, 1915: Á öðrum hnöttum: Getgátur og vissa. Reykjavík 1915.
  31. Ágúst H. Bjarnason, 1915-19: Heimsmyndin nýja I, II, III, IV, V og VI.
  32. Magnús Stephensen, 1916: Sólin og Sirius. Eftir bók R. Balls, The Story of the Heavens.
  33. Frímann B. Arngrímsson, 1916: Heimurinn.
  34. Þorvaldur Thoroddsen, 1916: Siríus.
  35. Þorvaldur Thoroddsen, 1916: Hin nýja stjörnulist.
  36. Þorvaldur Thoroddsen, 1916: Fjarlægð og hreyfing stjarna - Tvístjörnur.
  37. Þorvaldur Thoroddsen, 1917: Heimur og geimur.
  38. Holtsmark, J., 1921: Einsteinskenning. Þýðanda er ekki getið.
  39. Ólafur Dan Daníelsson, 1922: Afstæðiskenningin.
  40. Samúel Eggertsson, 1925: Nýjungar í stjörnufræði.
  41. Ágúst H. Bjarnason, 1926: Himingeimurinn. Akureyri 1926
  42. Ásgeir Magnússon, 1924-26: Stjörnuríkið I, II, III, IV, V & VI.
  43. Ásgeir Magnússon, 1925-26: Vetrarbraut I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII & XIV.
  44. Ásgeir Magnússon, 1926: Djúpið mikla.
  45. Ásgeir Magnússon, 1926: Heimsendir.
  46. Ásgeir Magnússon, 1926: Vetrarbraut: Alþýðubók og skólabók. Rvík 1926. Að mestu safn áður útgefinna greina höfundar.
  47. Þorkell Þorkelsson, 1926: Afstæðiskenningin og tilraun Michelsons.
  48. Ásgeir Magnússon, 1927-28: Rúm og tími I, II, III, IV.
  49. Fisher, C., 1929: Veraldir í smíðum. Sveinn Sigurðsson þýddi.

III. Tímabilið 1930-1960

  1. Ágúst H. Bjarnason, 1931: Heimsmynd vísindanna. (Fylgirit Árbókar Háskóla Íslands 1928–1929.) Rvík 1931.
  2. Steinþór Sigurðsson, 1931: Plútó.
  3. Trausti Einarsson, 1931: Um byggingu stjarnanna.
  4. Trausti Einarsson, 1933: Stjörnukíkir fyrir almenning.
  5. Jeans, J. 1933: Endalok. Ásgeir Magnússon þýddi lauslega úr lokakafla bókarinnar The Universe Around Us frá 1929.
  6. Sveinn Sigurðsson, 1934: Makrokosmos.
  7. Sveinn Sigurðsson, 1934: Stærsti sjónauki heimsins.
  8. Trausti Einarsson, 1935: Litrofin og þýðing þeirra fyrir rannsóknir á sólinni.
  9. Árni Friðriksson, 1937: Hvað er langt til stjarnanna?
  10. Trausti Einarsson, 1937: Tunglið. [Með myndum úr tveimur bókum Jeans í danskri þýðingu: Stjernerne Paa Himlen frá 1931 (The Stars in Their Cources, 1931) og Gennem Tid og Rum frá 1935 (Through Space and Time, 1934).]
  11. Árni Friðriksson, 1937: Ferð um sólkerfið. Stuðst við The Stars in Their Cources (1931) eftir J. Jeans.
  12. Björn Franzson, 1938: Efnisheimurinn. Reykjavík 1938.
  13. Steinþór Sigurðsson,  1939: Reikistjarnan Marz.
  14. Sveinn Sigurðsson, 1943: Líf á öðrum stjörnum.
  15. Sveinn Sigurðsson, 1943: Byggðir hnettir: ný viðhorf í stjörnufræði.
  16. Björn Franzson, 1944: Hverju líkist alheimurinn. Þýtt og endursagt úr fyrsta kafla bókarinnar An Outline of the Universe (1938) eftir J.G. Crowther.
  17. Trausti Einarsson, 1944: Ágrip af stjörnufræði handa menntaskólum. Fjölrituð drög.
  18. Trausti Einarsson, 1945: Fimm þýðingar í safnritinu Undur veraldar (eftir fyrstu útg. Treasury of Science frá 1941): (1) Kenningar um göngu jarðar um sólu eftir N. Kópernikus. (2) Sönnuð hreyfing jarðar eftir G. Galileí.  (3) Hinn skipulegi alheimur eftir F.R. Moulton. (4) Er líf á öðrum hnöttum? eftir J. Jeans. (5) Vetrarbrautin og það sem utar er eftir A. Eddington.
  19. Steinþór Sigurðsson, 1946: Ný kenning um myndunarsögu heimsins. Byggð á greininni A New Theory of the Past eftir B. S. Haldane frá 1945.
  20. Bj., 1946: Stærsti stjörnukíkir í heimi í smíðum.
  21. J.A., 1948: Stærsti stjörnukíkir heimsins.
  22. Anon, 1948: Stjörnustöðin á Palomar–fjalli.
  23. Ingalls, A.G., 1948: Nótt á Palomar–fjalli.
  24. Þorbjörn Sigurgeirsson, 1949: Geimgeislar.
  25. Anon, 1951: Heimsmyndin nýja.
  26. Ásgeir Magnússon, 1951: Stjörnustöðin á Palomarfjalli og viðfangsefni stjarnfræðinga.
  27. Anon, 1951: Heimsmynd Hoyles prófessors. Þýtt úr tímaritinu Time.
  28. Hoyle, F., 1951: Uppruni og eðli alheimsins. Reykjavík 1951. Hjörtur Halldórsson þýddi. Formálsorð eftir Trausta Einarsson.
  29. Trausti Einarsson, 1952: Sólmyrkvar á Íslandi frá 700-1800 e.Kr.
  30. Trausti Einarsson, 1953: Almyrkvi á sólu 1954.
  31. Trausti Einarsson, 1954: Sólmyrkvinn er mikilfengleg sjón.
  32. Trausti Einarsson, 1954: Aldur heimsins.
  33. Gamow, G., 1954: Þættir úr ævisögu jarðar. Reykjavík 1954. Hjörtur Halldórsson þýddi og
    endursagði.
  34. Jordan, P., 1954: Staða lífsins í alheiminum. Þýðandinn, Björn Franzson, skrifar einnig stuttan eftirmála.
  35. Anon, 1954: Ljósvakakenningunni sleppt. Þýtt.
  36. Hjörtur Halldórsson, 1955: Merkustu nýjungar í stjarnfræðivísindum árið 1954.
  37. Sveinn Sigurðsson, 1955: Heimsmynd vor í ljósi nútímans.
  38. Trausti Einarsson, 1955: Útvarpsbylgjur utan úr himingeimnum.
  39. Trausti Einarsson, 1956: Þensla alheimsins.
  40. Anon, 1957: Mikilleiki alheimsins: Ljósmyndun himingeimsins nú lokið á Palomar.
  41. Abbott, R.T. og fl., 1957: Heimurinn okkar. Reykjavík 1957. Hjörtur Halldórsson þýddi. Þrettándi kaflinn fjallar m.a. um stjarnvísindi.
  42. Sternfeld, A., 1957: Hnattferðir. Björn Franzson íslenskaði. Reykjavík 1957.
  43. Trausti Einarsson, 1958: Gervitungl.
  44. Trausti Einarsson, 1958: Hugmyndir manna um alheiminn fyrr og nú.
  45. Trausti Einarsson, 1959: Geimgeislar.
Birt í Eðlisfræði, Stjörnufræði

Sólstöðuhátíð til minningar um Stjörnu-Odda

Laugardaginn 20. júní 2020 var haldin hátíð  í Þingeyjarsveit  til minningar um spekinginn Stjörnu-Odda, sem þar var uppi í kringum 1100.  Stjarnvísindafélag Íslands reisti honum fallegan minnisvarða að Grenjaðarstað  og í kjölfarið var  haldið málþing í Ýdölum um  þennan forna íslenska stjörnufræðing og verk hans. Hér má finna frekari upplýsingar um atburðinn.

 

 

Birt í Miðaldir, Stjörnufræði

Stjarneðlisfræði og heimsfræði: Valdar erlendar heimildir og ítarefni um söguna, einkum frá dögum Newtons til okkar tíma

Listinn er enn í vinnslu og verður uppfærður eftir þörfum

 

A

  1. AIP-vefsíða: Cosmic Journey: A History of Scientific Cosmology.
  2. E. J. Aiton, 1972: The Vortex Theory of Planetary Motions.

B

  1. M. Bartusiak, 2004: Archives of the Universe.
  2. R. P. Baum & W. Sheean, 1997: In Search of Planet Vulcan: The Ghost in Newton’s Clockwork Universe.
  3. B. J. Becker,2008: Exploring the Cosmos: An Introduction to the History of Astronomy. Fyrirlestranótur.
  4. L. Belkora, 2002: Minding the Heavens.
  5. R. Berendzen, R. C. Hart og D. Seeley,1984: Man Discovers the Galaxies.
  6. A. Berry, 1898: A Short History of Astronomy.
  7. A. Blum, D. Giulini, R. Lalli & J. Renn, 2017: The Renaissance of Einstein’s Theory of Gravitation.

C

  1. D. E. Cartwright, 2000: Tides: A Scientific History.
  2. A. Celletti & E. Perozzi, 2007: Celestial Mechanics: The Waltz of the Planets.
  3. A. M. Clerke, 1890: The System of the Stars.
  4. A. M. Clerke, 1902: A Popular History of Astronomy During the Nineteenth Century. 4ja útg.
  5. I. B. Cohen & G. S. Smith ritstj., 2002: The Cambridge Companion to Newton. (2. útg. endurbætt, 2016).
  6. M. J. Crowe, 1988: The Extraterrestrial Life Debate 1750–1900: The Idea of a Plurality of Worlds from Kant to Lowell.
  7. M. J. Crowe, 1994: Modern Theories of the Universe: From Herschel to Hubble.

D

  1. F. Diacu & P. Holmes, 1996: Celestial Encounters: The Origins of Chaos and Stability
  2. A. Dressler, 1994: Voyage to the Great Attractor: Exploring Intergalactic Space.
  3. J. L. E. Dreyer, 1906: History of the planetary systems from Thales to Kepler. Endurútgefin hjá Dover 1953.

E

  1. S. Ebbesen og C. H. Koch, 2002-2004: Den danske filosofis historie 1-5.
  2. A. S. Eddington, 1920: Space, Time, and Gravitation: An Outline of the General Relativity Theory.
  3. A. S. Eddington, 1928: The Nature of the Physical World.

F

  1. P. Fara, 2002: Newton: the Making of Genius.
  2. M. Feingold, 2004: The Newtonian Moment: Isaac Newton and the Making of Modern Culture.
  3. P. G. Ferreira, 2014: The Perfect Theory: A Century of Geniuses and the Battle over General Relativity.
  4. T. Ferris, 1988: Coming of Age in the Milky Way.

G

  1. O. Gingerich,1984: The General History of Astronomy: Astrophysics and twentieth-century astronomy to 1950 - Part 4A.
  2. O. Gingerich,1994: Report on the Progress in Stellar Evolution to 1950.
  3. M. Gorst, 2001: Measuring Eternity: The Search for the Beginning of Time.
  4. C. M. Graney, 2015: Setting Aside All Authority: Giovanni Battista Riccioli and the Science against Copernicus in the Age of Galileo.
  5. R. Grant, 1852: History of Physical Astronomy: From the Earliest Ages to the Middle of the 19th Century. Comprehending a Detailed Account of the Establishment of the Theory of Gravitation by Newton, and Its Development by His Successors; with an Exposition of the Progress of Research on All the Other Subjects of Celestial Physics.
  6. A. Guth, 1997: The Inflationary Universe: The Quest for a New Theory of Cosmic Origins.

H

  1. E. Harrison, 1987: Darkness at Night: A Riddle of the Universe.
  2. E. Harrison, 2000: Cosmology: The Science of the Universe.  2. útg.
  3. S. W. Hawking & W. Israel, 1989: Three Hundred Years of Gravitation.
  4. J. B. Hearnshaw, 2014: The Analysis of Starlight: Two Centuries of Astronomical Spectroscopy.
  5. J. Hearnshaw, 2010: Auguste Comte's blunder: an account of the first century of stellar spectroscopy and how it took one hundred years to prove that Comte was wrong!
  6. J. B. Hearnshaw, 1996: The Measurement of Starlight: Two Centuries of Astronomical Photometry.
  7. D. B. Herrmann, 1984: The History of Astronomy from Herschel to Hertzsprung.
  8. N. S. Hetherington, 1993: Encyclopedia of Cosmology: Historical, Philosophical, and Scientific Foundations of Modern Cosmology.
  9. A. Hirshfeld, 2001: Parallax: The Race to Measure the Cosmos.
  10. A. Hirshfeld, 2014: Starlight Detectives: How Astronomers, Inventors, and Eccentrics Discovered the Modern Universe.
  11. M. Hoskin, 1997: The Cambridge Illustrated History of Astronomy.
  12. M. Hoskin, 2011: William Herschel and the Nebulae, Part 1: 1774-1784 og Part 2: 1785-1818.
  13. M. Hoskin, 2012: The Construction of the Heavens: William Herschel's Cosmology.
  14. K. Hufbauer, 1981:Astronomers Take up the Stellar-Energy Problem, 1917-1920.
  15. K. Hufbauer, 2006: Stellar structure and evolution, 1924 - 1939.
  16. K. Hufbauer, 1991: Exploring the Sun: Solar Science Since Galileo.
  17. O. Høiris & T. Ledet ritstj., 2007: Oplysningens verden: Idé, historie, videnskab og kunst.

J

  1. J. Jeans, 1931: The Universe Around Us.
  2. J. Jeans, 1931: The Mysterious Universe.

K

  1. H. C. King, 1955: The History of the Telescope.
  2. A. Koyré, 1957: From the Closed World to the Infinite Universe.
  3. H. Kragh, 1999: Cosmology and Controversy: The Historical Development of Two Theories of the Universe.
  4. H. Kragh og R. W. Smith, 2003: Who Discovered the Expanding Universe?
  5. H. Kragh, 2004: Matter and Spirit in the Universe: Scientific and Religious Preludes to Modern Cosmology. (Hér er verkið í heild.)
  6. H. Kragh, H. Nielsen, K. Hvidtfelt Nielsen & P. C. Kjærgaard, 2005-2006: Dansk Naturvidenskabs Historie 1-4.
  7. H. Kragh, 2008: Entropic Creation: Religious Contexts of Thermodynamics and Cosmology. (Hér er verkið í heild.)
  8. H. Kragh, 2012: Newtonianism in the Scandinavian Countries, 1690–1790.
  9. H. Kragh, 2013: Conceptions of Cosmos: From Myths to the Accelerating Universe. 
  10. H. Kragh, 2016: The Source of Solar Energy, ca. 1840-1910: From Meteoric Hypothesis to Radioactive Speculations.
  11. H. Kragh, 2017: Is the Universe expanding? Fritz Zwicky and the early tired-light hypothesis.
  12. H. Kragh, M. Longair, 2019: The Oxford Handbook of the History of Modern Cosmology.

L

  1. S. P. Langley, 1888: The New Astronomy.
  2. J. Lankford ritstj., 1997: History of Astronomy: An Encyclopedia.
  3. D. Leverington, 1995: A History of Astronomy: from 1890 to the Present.
  4. T. Levinson, 2015: The Hunt for Vulcan: How Albert Einstein Destroyed a Planet and Deciphered the Universe.
  5. A. Lightman & R. Brawer, 1990: Origins: The Lives and Worlds of Modern Cosmologists.
  6. M. Littmann, 1990: Planets Beyond: Discovering the Outer Solar System.
  7. M. S. Longair, 2006: The Cosmic Century: A History of Astrophysics and Cosmology.

M

  1. J. Mather & J. Boslough, 1996: The Very First Light: The True Inside Story of the Scientific Journey Back to the Dawn of the Universe.
  2. R. Miles, 2007: A light history of photometry: from Hipparchus to the Hubble Space Telescope.
  3. A. I. Miller, 2005: Empire of the Stars: Obsession, Friendship, and Betrayal in the Quest for Black Holes.
  4. I. R. Morus, 2005: When Physics Became King.
  5. C. Möller, 1955: The Theory of Relativity.

N

  1. S. Newcomb, 1878: Popular Astronomy.
  2. J. D. North, 1967: The Measure of the Universe: A History of Modern Cosmology.
  3. J. North, 2008: Cosmos: An Illustrated History of Astronomy and Cosmology.
  4. H. Nussbaumer & L. Bieri, 2009: Discovering the Expanding Universe.

P

  1. A. Pannekoek, 1961: A History of Astronomy.
  2. E. R.Paul, 1993: The Milky Way Galaxy and Statistical Cosmology, 1890-1924.
  3. P. J. E. Peebles, L. A. Page, Jr. & R. B. Partridge, 2009: Finding the Big Bang.
  4. P.J.E. Peebles, 2014: Discovery of the hot Big Bang: What happened in 1948.
  5. P.J.E. Peebles, 2017: Robert Dicke and the naissance of experimental gravity physics, 1957–1967.
  6. P. J. E. Peebles, 2020: Cosmology’s Century: An Inside History of Our Modern Understanding of the Universe.
  7. I. Peterson, 1993: Newton's Clock: Chaos In The Solar System.

R

  1. S. O. Rebsdorf, 2005: The Father, the Son, and the Stars: Bengt Strömgren and the History of Twentieth Century Astronomy in Denmark and in the USA.

S

  1. R. W. Smith, 1982: The Expanding Universe: Astronomy's 'Great Debate', 1900-1931.
  2. R. W. Smith, 2008-09: Beyond the Galaxy: The Development of Extragalactic Astronomy 1885-1965, Part 1 og Part 2.
  3. G. Smoot & K. Davidson, 1994: Wrinkles in Time: The Imprint of Creation.
  4. D. Sobel, 2016: The Glass Universe: How the Ladies of the Harvard Observatory Took the Measure of the Stars.
  5. T. Standage, 2000: The Neptune File: Planet Detectives and the Discovery of Worlds Unseen.

T

  1. J.-L. Tassoul & M. Tassoul, 2014: A Concise History of Solar and Stellar Physics.
  2. R. Taton & C. Wilson ritstj., 1989: The General History of Astronomy: Planetary Astronomy from the Renaissance to the Rise of Astrophysics - Part 2A: Tycho Brahe to Newton.
  3. R. Taton & C. Wilson ritstj., 1995: The General History of Astronomy: Planetary Astronomy from the Renaissance to the Rise of Astrophysics - Part 2B: The Eighteenth and Nineteenth Centuries.
  4. M. Terrall, 2002: The Man Who Flattened the Earth: Maupertuis and the Sciences in the Enlightenment.
  5. K. S. Thorne, 1994: Black Holes & Time Warps: Einstein's Outrageous Legacy.
  6. C. Thykier ritstj., 1990: Dansk astronomi gennem firehundrede år 1-3.

W

  1. F. Watson, 2004: Stargazer: the Life and Times of the Telescope.
  2. C. M. Will, 2018: Theory and Experiment in Gravitational Physics. 2. útg.
  3. C. M. Will & N. Yunes, 2020: Is Einstein Still Right?: Black Holes, Gravitational Waves, and the Quest to Verify Einstein's Greatest Creation.

Z

  1. R. Zimmerman, 2008: The Universe in a Mirror: The Saga of the Hubble Telescope and the Visionaries who Built it.

 

 

Birt í Eðlisfræði, Stjörnufræði

Stjarneðlisfræði og heimsfræði á Íslandi 1: Inngangur

Yfirlit um greinaflokkinn

Þessi bloggfærsla er hugsuð sem inngangur og kynning á fyrirhugaðri röð yfirlitsgreina um sögu stjarneðlisfræði og  heimsfræði á Íslandi á tímabilinu frá upplýsingaröld til geimaldar. Ætlunin er að taka efnið fyrir í afmörkuðum skömmtum og réttri tímaröð með upphafi í kringum 1780. Jafnframt verður lögð áhersla á að setja umfjöllunina í samhengi við þróunina á alþjóðavettvangi á hverjum tíma.  -  Fremst og aftast eru drög að efnisyfirliti fyrir greinaflokkinn og verða þau uppfærð jafnóðum og nýjar færslur birtast.

Rétt er að geta þess strax í upphafi, að undirritaður er hvorki sagnfræðingur né heimspekingur og mun því fyrst og fremst nálgast þetta verkefni út frá persónulegum viðhorfum sínum og sérþekkingu í stjarneðlisfræði og heimsfræði. Umfjöllunin byggir þó jafnframt á ýmis konar sagnfræðigrúski, lestri og heimildaleit á erlendum sem innlendum bókasöfnum  og nú upp á síðkastið á hinum ómissandi (en oft varhugaverða) veraldarvef.

Ljóst er að fyrstu færslunar koma til með að fjalla nær eingöngu um alþýðufræðslu og kennslu á áðurnefndum sviðum, einfaldlega vegna þess, að vísindalegar rannsóknir í stjarneðlisfræði og heimsfræði hófust ekki hér á landi fyrr en talsvert var liðið á seinni hluta tuttugustu aldar. Sá hluti sögunnar verður tekinn fyrir í lok greinaflokksins.

Í þessu sambandi er rétt að minna á, að skólakennsla og alþýðufræðsla í raunvísindum eru mikilvægir þættir í menningu hverrar þjóðar. Þeir eiga meðal annars drjúgan þátt í því að móta vísindalæsi almennings og almenn viðhorf til vísinda og fræða. Þá byggir heimsmynd almennings á hverjum tíma á þessum sama grunni.

.

Smáþjóð á útjaðri vestrænnar menningar

Fyrr á tímum voru þeir Íslendingar, sem lögðu stund á háskólanám, aðeins örlítill hluti þjóðarinnar. Eftir siðaskiptin (1550) sóttu þessir einstaklingar nær undantekingarlaust þekkingu til Háskólans í Kaupmannahöfn, og þegar heim var komið voru þeir ýmist kallaðir lærðir menn eða lærdómsmenn (á kaþólskum miðöldum voru þeir menntamenn, sem ekki voru biskupar, hins vegar oft kallaðir fróðir). Aðrir Íslendingar tilheyrðu langflestir „alþýðunni“, allavega í þeim skilningi, sem hér verður lagður í orðið.

Hafnarháskóli var í raun háskóli íslensku þjóðarinnar til 1911, þegar Háskóli Íslands var stofnaður. Nám í verkfræði hófst þó ekki hér heima fyrr en 1940 og eiginlegt nám í raunvísindum þrjátíu árum síðar. Því má segja, að Ísland hafi verið á útjaðri raunvísindaiðkunar allt fram á síðasta fjórðung tuttugustu aldar, ef ekki lengur.

Eins og þegar hefur komið fram, fjallar greinaflokkur þessi um sögu stjarneðlisfræði og heimsfræði á Íslandi eftir 1780. Ef menn hafa áhuga á að kynna sér þekkingu Íslendinga á þessum fræðum fyrir þann tíma, má benda á ýmsa pistla, sem ég hef tekið saman um tímabilið frá siðaskiptum fram til 1800. Einnig hef ég fjallað um nokkra afmarkaða þætti úr sögu nítjándu og tuttugustu aldar og tekið saman heimildaskrá um stjörnulist á miðöldum. Allt þetta efni er hægt að nálgast á vefsíðunni:

Meðal lærðra manna fyrir 1780 var Gísli Þorláksson biskup (1631-1684). Hann var málsvari jarðmiðjukenningarinnar, eins og sjá má á latneskri dispútatíu hans um fastastjörnur og föruhnetti frá 1651. Sú merka ritsmíð er fyrsta prentaða ritgerðin um stjörnufræði eftir íslenskan höfund.

Rúmri hálfri öld síðar samdi Þorleifur Halldórsson rektor (1683-1713) latneska dispútatíu um festinguna  (1707), sem byggði bæði á sólmiðjukenningu Kóperníkusar og hvirflakenningu Descartes (sjá nánari umfjöllun um grein Þorleifs hér, bls. 267-272). Um svipað leyti dispúteraði Magnús Arason landmælingamaður (1683-1728) þrisvar um tunglið á latínu (1708, 1709 og 1710). Hann lærði hjá Ole Römer og hafði meðal annars kynnt sér verk Keplers undir leiðsögn hans. Bæði Römer og Magnús voru eindregnir fylgismenn Descartes og aðhylltust því sólmiðjukenninguna, eins og hann.

Þessi mynd af jarðmiðjuheimi er tekin úr íslenska handritinu JS 392 8vo (161r-198v) frá því um miðja átjándu öld. Ástæða er til að ætla, að þetta hafi verið heimsmynd hins dæmigerða Íslendings á þeim tíma, enda er teikningin í fullu samræmi við kaflann Um þær sjö plánetur og tólf himinsins teikn, þeirra nöfn, náttúru og verkan í rímbókinni Calendarium perpetuum - ævarandi tímatal frá 1692 (bls. 100-108). Bókin sú er eftir Þórð Þorláksson biskup (1637-1697) og var mikið notuð hér á landi langt fram eftir átjándu öldinni. Hún gekk almennt undir nafninu „Þórðarrím“ (sjá nánar hér).

Fyrsti Íslendingurinn, sem kynnti sér náttúruspeki Newtons og fjallaði um hana í dispútatíum, var Stefán Björnsson reiknimeistari (1721-1798). Þessir fyrirlestrar hans frá árunum 1758-60 voru, eins og aðrar dispútatíur, prentaðir í mjög takmörkuðu upplagi. Þeir voru jafnframt á latínu og hafa því væntanlega ekki komið íslenskri alþýðu að miklu gagni. Í erindi Stefáns um verkan halastjarna, sem ganga niður í reikistjörnukerfi vort, er meðal annars fjallað um þyngdarlögmál Newtons og truflanir og sjávarfallakrafta af völdum halastjarna. Þetta mun hafa verið einn af fyrstu fyrirlestrum um þyngdarfræði Newtons við Háskólann í Kaupmannahöfn. Ýmsir Danir og Norðmenn, eins og til dæmis hinn merki fræðimaður Jens Kraft, höfðu þó áður kynnt sér verk meistarans í nokkrum smáatriðum og fjallað um þau í rituðu máli.

Áður en lengra er haldið, er rétt að minna á, að á ofanverðri átjándu öld hélt Danska vísindafélagið úti reglubundnum stjörnuathugnum á suðvesturhorni Íslands. Eyjólfur Jónsson (1735-1775) var skipaður stjörnumeistari árið 1772. Nokkrum árum eftir lát hans tók Norðmaðurinn Rasmus Lievog (1738-1811) við starfinu, sem hann sinnti til 1805, skömmu eftir að strandmælingarnar síðari hófust.  Um þessa merku sögu má lesa nánar í eftirfarandi færslum:

Turnar_Frímerki

Tveir stjörnuturnar. Til vinstri: Sívaliturn á þriggja alda afmæli turnsins árið 1942. Stjörnuathugunarstöðin er á þakinu (mikið breytt frá því á átjándu öld; sjá t.d. hér). Þarna störfuðu þeir Eyjólfur Jónsson frá 1766(?) til 1770 og Rasmus Lievog frá 1775 til 1779.  Til hægri: Stjörnuturninn í Lambhúsum (hönnuður frímerkis: Örn Smári Gíslason, eftir teikningu Johns Baine frá 1789). Þar sinnti Lievog athugunum frá 1783 til 1805.  

Stjörnuturninn í Lambhúsum er fyrsta og jafnframt eina opinbera stjörnuathugunarstöðin, sem starfað hefur hér á landi. Á öllum tímum hafa þó ýmsir áhugasamir Íslendingar fylgst með stjörnuhimninum og áhugaverðum stjarnfræðilegum fyrirbærum og ekki síst misjafnlega óvæntum atburðum, sem þar eiga sér stað. Um þetta er meðal annars fjallað í eftirfarandi færslum:

Íslenskir sérfræðingar komu tiltölulega seint að þróun nýrrar stjarnmælingatækni eða smíði stjarnmælingatækja af einhverju tagi. Til skamms tíma höfum við því fyrst og fremst verið í hlutverki notandans á því sviði. Það á til dæmis við í samstarfi okkar um Norræna stjörnusjónaukann, sem hófst 1997. Af þeim ástæðum verður hér lítið fjallað um stjörnusjónauka eða annan tækjabúnað fyrr en síðar í greinaflokknum. Í millitíðinni má þó benda á eftirfarandi heimildir:

 

Upplýsing og alþýðufræðsla

Eitt af helstu einkennum upplýsingartímans var mikil fjölgun fræðslurita, sem ætluð voru leikmönnum og því samin á þjóðtungum í stað latínu, ritmáli lærðra manna. Strax í upphafi átjándu aldar var framboð á alþýðuritum á þeim sviðum, sem við nú köllum raunvísindi, orðið verulegt víða í Evrópu. Mest var útgáfustarfsemin í löndum eins og Englandi, Frakklandi og Þýskalandi og þaðan barst þekkingin áfram til annarra landa.

Sól upplýsingarinnar skín á mannheima. Á borðanum stendur Lucem post nubila reddit (eftir skýin kemur ljósið á ný) og með skýjum er sennilega verið að vísa til „hinna myrku miðalda“. Myndin er úr bókinni Vernünfftige Gedancken von Gott, der Welt und der Seele des Menschen, auch allen Dingen überhaupt eftir heimspekinginn Christian Wolff. Verkið kom upphaflega út í Halle árið 1720 en myndin er tekin úr útgáfu frá 1747.

Alþýðuritum um náttúruspeki og heimsmynd fjölgaði verulega í Danaveldi eftir 1760 og var þar bæði um að ræða rit frumsamin á dönsku og þýdd verk, einkum úr þýsku, frönsku og ensku. Hér á landi birtust fyrstu alþýðlegu greinarnar um raunvísindi og tækni í  Ritum þess (konunglega) íslenska Lærdómslistafélags á árunum 1781 til 1796. Það er ástæðan fyrir því, að þessi greinaflokkur mun fyrst og fremst fjalla um tímabilið eftir 1780.

Þótt lítið sé hægt að fullyrða um það með vissu, þá hefur talsverður hluti  íslenskrar alþýðu, þar á meðal margir prestar, sennilega lesið fræðslurit um raunvísindi á dönsku á seinni hluta átjándu aldar og í byrjun þeirrar nítjándu. Sem dæmi má nefna, að Jón Jónsson „lærði“, sem reyndar gat lesið mörg tungumál, hafði kynni af eftirtöldum alþýðuritum á dönsku, eins og sjá má í hinum ágætu neðanmálsgreinum hans í verkinu Sá guðlega þenkjandi náttúruskoðari frá 1798:

  • W. Derham, 1759: Astro- et physico-Theologie, eller de synlige himmelske Corporers og Jordens utallige Creatures og Naturs Betragtning, til et øyensynligt og uomstødeligt Beviis, at der er en Gud til, og at han er det høyeste Gode, det allerbeste, allerviseste og almægtige Væsen. (Sjá einnig hér og hér.)
  • C. Bastholm, 1787, Philosophie for Ulærde.
  • P. Søeborg, 1788: Stierne-Catechismus for almindelig Mand. (Peder Søeborg varð aðstoðarmaður Christians Horrebow í Sívalaturni skömmu eftir að Eyjólfur Jónsson stjörnufræðingur fluttist til Íslands árið 1770.)
  • L. Euler, 1792-93: Breve til en Prindsesse i Tydskland over adskillige Gienstande af Physiken og Philosophien. (Hér má sjá enska útgáfu frá 1802: Vol. I , Vol. II ásamt umsögn.)

Af þessum verkum mun bók Bastholms hafa náð mestri hylli, bæði í Danmörku og hér heima. Meðal annarra alþýðurita, sem komu út í Kaupmannahöfn um svipað leyti, voru bækur með nöfnum eins og Den astronomiske Børneven (1794) og Naturlære for Fruentimmere (1800). Hvort þessi síðasttöldu verk voru lesin á Íslandi, veit ég ekki.

Þeim, sem vilja lesa nánar um upplýsinguna í Danaveldi og áhrif hennar langt fram á nítjándu öld, má benda á eftirtalin rit:

Þeir tiltölulega fáu Íslendingar, sem fóru til náms við Háskólann í Kaupmannahöfn á dögum þýsk-dönsk-íslensku upplýsingarinnar, lærðu frumatriði stærðfræðilegrar stjörnufræði, fyrst hjá Horrebow-feðgunum Peder og Christian og síðar hjá Thomas Bugge. Náttúruspekina lærðu þeir hjá Christian Kratzenstein og síðar hjá Bugge til 1806, þegar Hans Christian Örsted tók við.  Undurstöðuatriði þessara fræða voru hins vegar ekki kennd við skóla hér á landi fyrr en um og uppúr 1846, eftir að Reykjavíkurskóli var kominn til sögunnar. Nánar er um þetta fjallað í eftirfarandi færslum:

Í eftirfarandi heimildum má svo lesa um almennan bakgrunn þessarar sögu á átjándu og nítjándu öld og vel fram á þá tuttugustu:

Í þessum greinaflokki verður meðal annars fjallað um flest þau rit um stjarneðlisfræði og heimsfræði á íslensku, sem stóðu almenningi til boða á hverjum tíma. En áður en að því kemur, verður gefið örstutt yfirlit um vísindalegan grundvöll þessara fræða á tímabilinu frá miðri átjándu öld til vorra tíma. Farið verður dýpra í einstök atriði í seinni færslum, þar sem það á við.

 

Grunnurinn að heimsmynd nútímans

Um miðja átjándu öld hafði náttúruspeki Newtons að mestu leyst hugmyndafræði Descartes af hólmi meðal náttúruvísindamanna í Englandi og á meginlandi Evrópu. Flest alþýðurit um heimsmynd stjarnvísinda endurspegluðu þessa þróun, þar á meðal hin íslensku. Staðreyndin er og sú, að án alþýðuritanna hefði það tekið mun lengri tíma en ella fyrir hugmyndafræði Newtons að festa sig í sessi í menningu Vesturlanda. Þar var hún svo allsráðandi í raunvísindum allt fram á tuttugustu öld.

Í miðjunni er málverk G. Knellers af Isaac Newton frá árinu 1689. Honum sitt til hvorrar handar eru myndir af forsíðum verkanna Stærðfræðilögmál náttúruspekinnar (1687) og Ljósfræði (1704).

Í upphafi þótti flestum fræði Newtons ákaflega torskilin, enda var bók hans um Stærðfræðilögmál náttúruspekinnar ekkert léttmeti. Það kom því í hlut ýmissa snjallra náttúruspekinga og stærðfræðinga að kynna  hugmyndir meistarans fyrir öðrum menntamönnum og almenningi. Um þá fræðslu má til dæmis lesa í eftirfarandi heimildum:

Mynd úr hinu áhrifamikla riti, Elémens de la philosophie de Neuton, frá 1738. Hún sýnir höfundinn, Voltaire, vinna að bókinni. Himneskt ljós þekkingarinnar skín í gegnum höfuð Newtons og endurspeglast niður á handritið. Það er ástkona Voltaires og samstarfsmaður,  Émilie du Châtelet, sem heldur á speglinum. Du Châtelet var framúrskarandi náttúruspekingur og  þýddi til dæmis verk Newtons á frönsku. Hún aðstoðaði einnig Voltaire við að skilja verk enska meistarans.

Ef menn vilja kynna sér sögu stjarnvísinda og heimsfræði fyrir daga Newtons og þau áhrif sem forverar höfðu á hugmyndir hans, má benda á eftirfarandi öndvegisrit:

Rekja má upptök nútíma stjarneðlisfræði og heimsfræði til rannsókna Newtons í aflfræði og ljósfræði. Þar skiptir mestu framsetning hans á þyngdarlögmálinu og notkun þess til að útskýra, meðal annars, áhrif þyngdarinnar á jarðnesk fyrirbæri og hreyfingar reikistjarna, tungla og halastjarna í sólkerfinu. Lögmálið var jafnframt hryggjarstykkið í heimsmyndinni, sem við hann er kennd. Nánari umfjöllum um þetta efni er að finna í næstu færslum.

Aflfræði Newtons, og þar með þyngdarfræði hans og heimsmynd, byggðu á forsendum hans um rúm og tíma. Tími Newtons var algildur, það er hann var aðskilinn frá rúminu (og öllu öðru) og leið alls staðar áfram í jöfnum mæli, eins fyrir alla athugendur.  Rúmið var einnig algilt og óendanlegt, óbreytanlegt þrívítt evklíðskt rúm. Það var eins og óendanlega stór kassi, heimkynni alls efnis og vettvangur allrar hreyfingar og allra atburða í alheimi.

Þessar forsendur Newtons um rúm og tíma voru grunnur eðlisfræði og stjörnufræði í  einar tvær aldir, eða þar til Einstein setti fram takmörkuðu afstæðiskenninguna árið 1905.  Eins og nafnið gefur til kynna, eru bæði rúm og tími afstæð fyrirbæri í kenningu hans. Í daglegu lífi upplifum við þó enn rúm og tíma að hætti Newtons og það án frekari umhugsunar. Þetta á jafnvel við, þegar við beitum hinni handhægu staðsetningartækni, GPS, sem væri algjörlega gagnslaus, ef ekki væri tekið tillit til afstæðikenninga Einsteins.

Þegar Einstein setti fram almennu afstæðiskenninguna árið 1915 gjörbreytti hann einnig hugmyndum eðlisfræðinga og stjörnufræðinga um þyngdina og sýndi jafnframt fram á, að þyngdarlögmál Newtons gildir aðeins sem góð nálgun við ákveðnar aðstæður, til dæmis þær sem ríkja á jörðinni og í sólkerfinu. Hinsvegar er myndin af alheimi öll önnur í kenningu Einsteins en hjá Newton. Meira um það í seinni færslum.

Albert Einstein í kringum 1933. Í bakgrunni er teikning af hamfarakenndum árekstri tveggja svarthola ásamt meðfylgjandi þyngdarbylgjum og þyngdarlinsuhrifum.  Nánari skýringar: Stuttmynd SXS frá því í febrúar 2016.

Það eru fleiri greinar eðlisfræðinnar en aflfræði og afstæðiskenningar, sem hafa verið mikilvægar fyrir þróunina í stjarneðlisfræði og heimsfræði á undanförnum tveimur öldum. Þar má meðal annars nefna ljósfræði og rafsegulfræði, varmafræði og safneðlisfræði, skammtafræði, atómeðlisfræði, kjarneðlis- og öreindafræði og loks rafgasfræði og þéttefnisfræði. Þá hafa efnisfræði og efnafræði ásamt verkfræði oftar en ekki skipt sköpum í tengslum við hönnun og smíði sjónauka og annarra stjarnmælingatækja. Þá má heldur ekki gleyma stærðfræðinni og viðamiklum tölvureikningum. Að auki hefur heimspekin ávallt svifið yfir vötnunum, jafnt í þessum sem öllum öðrum vísindum.

Að mínu mati væri það óðs manns æði að ætla sér að lýsa alþóðlegri þróun stjarneðlisfræði og heimsfræði síðustu tveggja alda af einhverju viti í nokkrum bloggfærslum. Þar sem umfjöllun mín í þessum færslum er fyrst og fremst bundin við Ísland, mun ég því ekki reyna að rekja hina alþjóðlegu sögu sem slíka, heldur aðeins glugga í þá þætti hennar sem tengjast beint þróuninni hér heima. Hins vegar mun ég gæta þess að vísa í gagnlegar heimildir um hinn alþjóðlega bakgrunn á hverjum tíma.

Í lokin eru hér drög að efnisyfirliti fyrir greinaflokkin, eins og höfundurinn hugsar sér hann núna. Mikilvægt er að hafa í huga, að skiptingin í tímabil miðast fyrst og fremst við íslenskan veruleika og umfjöllunina og þróunina hér á landi.  -  Drögin verða uppfærð jafnóðum og nýtt efni kemur á vefinn. Þau koma því ekki til með að fá sitt endanlega form fyrr en síðasta færslan birtist á þessum síðum.


* Stjarneðlisfræði og heimsfræði á Íslandi: Efnisyfirlit *


 

Birt í Eðlisfræði, Stjörnufræði

Magnús Arason landmælingamaður

Þetta yfirlit var upphaflega birt í desember 2017 sem hluti af færslunni Rit eftir Íslendinga á lærdómsöld: Stærðfræðilegar lærdómslistir.
.
Stærðfræðilega lærdómsmannsins og latínuskáldsins Magnúsar Arasonar er nú einkum minnst sem fyrsta íslenska landmælingamannsins. Eftir nám og störf í Kaupmannahöfn gekk Magnús í mannvirkjasveit danska hersins og var að lokum sendur til Íslands til landmælinga. Hann drukknaði við slík störf árið 1728. Lesa má um ævi Magnúsar hér, en ítarlegri lýsingu á námi hans og störfum má finna hér (bls. 20-25).
.
Á árunum 1707 til 1710 dispúteraði Magnús fimm sinnum við Hafnarháskóla og lét prenta alla fyrirlestrana. Þrjár af dispútatíunum voru um tunglið, ein um beltaskiptingu jarðar og sú fimmta um þríhyrningamælingar. Þá gaf hann út erfiljóð eftir kennara sinn Ole Rømer.
 .
 Fyrirlestrar um tunglið
.

Dispútatíur Magnúsar Arasonar um tunglið frá árunum 1708 til 1710 eru allar í fjórðungsbroti. Samanlagt eru þær 15 stuttir kaflar á 22 síðum.

 Í fyrstu dispútatíunni er rætt um tunglsljósið, hvort tunglið framleiði það sjálft, eða hvort um sé að ræða endurkast frá sólinni. Síðan ræðir Magnús um kvartilaskipti tunglsins, þar á meðal um uppruna orðsins „fasis“ (fasi). Þá lýsir hann í smáatriðum breytilegu útliti tunglsins eftir því hvar það er statt miðað við sólina. Einnig fjallar hann stuttlega um mikilvægi kvartilaskipta fyrir hin ýmsu tímatöl.
.

Í annarri dispútatíunni fjallar Magnús um fornar og nýjar hugmyndir um hugsanlegan lofthjúp á tunglinu og heldur því fram, að þar sé ekkert andrúmsloft. Í því sambandi bendir hann á, að það sé „fyrir löngu alkunna af stjörnum, sem hverfa ef þær ganga á bak við tunglið og koma fram undan aftur og sjást skýrt í stjörnukíki bæði undan og eftir fast við tungljaðarinn“. Síðan ræðir Magnús fram og aftur um þá staðreynd, að á hverjum tíma, nema við tunglmyrkva, sé rúmlega helmingur tunglsins upplýstur af sólarljósi. Ástæðan sé sú, að sólin sé stærri en tunglið.

Þriðja og síðasta dispútatían fjallar um atriði, er meðal annars tengjast heimsmynd stjörnufræðinnar. Eftir skáldlegan formála um ágæti talnafræði og rúmfræði beitir Magnús aðferð Aristarkosar frá Samos til að finna fjarlægðina til sólar. Síðan notar hann þriðja lögmál Keplers til að finna fjarlægð hinna reikistjarnanna frá miðpunkti sólkerfisins.

Magnús lýkur þriðju dispútatíunni með með því að ræða um lengdarákvarðanir. Hann tekur fram, að venjulega sé lengdarmunur staða fundinn með því að fylgjast með atburðum á himni, sem hægt sé að tímasetja nákvæmlega á báðum stöðum. Til dæmis megi nota sól- og tunglmyrkva í þessu sambandi og ekki síður myrkva Júpíterstungla. Hann heldur því síðan fram, að einnig megi hafa gagn „af kvartilaskiptum tunglsins og hvenær birta fellur á auðþekkt kennileiti á yfirborði þess“.

Fjallað er um dispútatíur Magnúsar um tunglið í frekari smáatriðum í grein Einars H. Guðmundssonar frá 2008 (bls. 18-19).

Beltaskipting jarðarinnar

Fyrirlestur Magnúsar Arasonar, Um belti jarðar, var haldinn árið 1707 og fjallaði, eins og nafnið gefur til kynna, um það hvernig gangur sólar á hvelfingunni ákvarðar hin svokölluðu loftslagsbelti. Beltin eru tekin fyrir hvert af öðru og eiginleikum þeirra lýst í nokkrum smáatriðum, meðal annars veðurfari og hvaða áhrif sólin hefur á líf þeirra, sem þar búa.

Til vinstri er forsíðan á dispútatíu Magnúsar Arasonar, Um belti jarðar, frá 1707. - Til hægri er forsíðan á bæklingi hans frá 1710 með erfiljóðinu um Ole Rømer.

Minningarljóð um Ole Rømer

Erfiljóð Magnúsar um fyrrum kennara sinn og fyrirmynd, Ole Rømer, er haft með í þessari upptalningu þar sem það fjallar að verulegu leyti um afrek Rømers á sviði stærðfræðilegra lærdómslista. Meðal annars er ort um ákvörðun hans á endanlegum hraða ljóssins, hönnun og smíði stjarnmælingatækja og líkön hans af hreyfingu himintungla.

Einfaldar þríhyrningamælingar

Á dögum Magnúsar Arasonar voru þríhyrningamælingar og kortagerð eitt af virkustu sviðum hagnýttrar stærðfræði og eins og áður sagði, varð hann með tímanum fyrsti íslenski landmælingamaðurinn. Önnur af tveimur dispútatíum hans frá 1710 fjallar um þau fræði frá nokkuð sérsökum sjónarhóli (hin var þriðja dispútatía hans um tunglið).

Forsíðan á dispútatíu Magnúsar, Um einfaldari hjálpartæki í flatarmálsfræði, frá því í desember 1710.

Í upphafi dispútatíunnar, Um einfaldari hjálpartæki í flatarmálsfræði, segir Magnús að tilgangur hennar sé, að sýna „hvernig hægt er með prikum einum að kanna fjarlægðir tiltekinna staða, eins þótt þeir séu óaðgengilegir, einnig breidd fljóta og stærð hvaða horna sem vera skal á víðavangi. Og prikin gera sama gagn og alls kyns skrautlegt og rándýrt verkfæraprjál sem afla verður með meiri tímasóun og fyrirhöfn“. Aðferð Magnúsar byggist á flatarmálsfræði og dispútatían er því myndskreytt. Sjá nánari umfjöllun hér (bls. 22).

Opna úr dispútatíu Magnúsar, Um einfaldari hjálpartæki í flatarmálsfræði, frá 1710. Ekki var algengt í Kaupmannahöfn þess tíma, að menn birtu teikningar í prentuðum háskólaritgerðum, eins og hér er gert. Til dæmis eru engar myndir í öðrum dispútatíum Magnúsar.

Þetta var síðasta verkið sem Magnús samdi í Kaupmannahöfn og skömmu síðar gerðist hann „verkfræðingur“ (ingenieur) í mannvirkjasveit danska hersins.

 

Birt í Átjánda öldin, Stærðfræði, Stjörnufræði

Eðlisfræði Fischers, fyrsta eðlisfræðibókin sem kom út á íslensku

Viðbót, 5. maí 2021: Eðlisfræði Fischers er nú komin á vefinn:

Þetta stutta yfirlit var upphaflega birt í september 2019 sem hluti af færslunni H. C. Örsted, bein og óbein áhrif hans á Íslendinga og upphaf kennslu í eðlisfræði og stjörnufræði við Reykjavíkurskóla.

Forsíðan á kennslubókinni og alþýðuritinu Eðlisfræði eftir J. G. Fischer.

Þegar hin merka þýðing Magnúsar Grímssonar á Eðlisfræði Fischers kom út árið 1852, greip Björn Gunnlaugsson tækifærið og valdi hana strax sem kennslubók í eðlisfræði við Reykjavíkurskóla veturinn 1852-53. Lesnir voru kaflarnir um hljóð, segulmagn, rafmagn og loftsjónir, en í aflfræðinni var áfram stuðst við bók Örsteds, Naturlærens mechaniske Deel. Þessar tvær bækur voru notaðar saman í nokkur ár.

Magnús Grímsson, þýðandi Eðlisfræði Fischers.

Í fyrstu útgáfu Dægradvalar frá 1923 minnist Benedikt Gröndal á Magnús og segir af sinni alkunnu meinfýsi (bls. 194):

Magnús þýddi Fischers eðlisfræði með aðstoð Bjarnar Gunnlaugssonar, því sjálfur vissi hann lítið eða ekkert í þeirri grein.

Í handritum Magnúsar er að finna ýmsa kafla um eðlisfræði og af þeim má sjá, að ummæli Benedikts eru langt frá því að vera sanngjörn. Magnús hefur þó að öllum líkindum leitað til Björns um ýmis vafaatriði sem og yfirlestur. Í bókinni eru einnig nokkrar neðanmáls-greinar eftir Björn, sérstaklega merktar honum.

Kaflinn um seguláhrif rafstraums í Eðlisfræði Fischers.

Eðlisfræði eptir J. G. Fischer er þýðing og að nokkru leyti endursögn á dönsku bókinni J. G. Fischers populære Naturlære til Brug i Skoler og ved Selvunderviisning frá 1844. Skólafrömuðurinn og stjórnmálamaðurinn Frederik Frölund þýddi þá bók úr þýsku og aðlagaði lítillega að dönskum aðstæðum.

Þýska útgáfan var frá 1843 og bar nafnið J. H. Hellmuth's Volks-Naturlehre. Zehnte Auflage. Nach dem Tode des Verfassers zum dritten Male bearbeitet von J. G. Fischer. Bókin var vinsælt alþýðurit og jafnframt kennslubók í Þýskalandi og hafði áður komið þar í níu útgáfum. Upphaflegur höfundur var þýski alþýðufræðarinn og presturinn Johann Heinrich Helmuth og bókin kom fyrst út árið 1786 undir heitinu Volksnaturlehre zur Dämpfung des Aberglaubens.

Johann Heinrich Helmuth (1732-1813).

Eftir lát Helmuths tók kennslubókahöfundurinn J. G. Fischer við útgáfunni, en hann kenndi lengi við kennaraskólann í Neuzelle (því miður veit ég ekki mikið meira um Fischer). Vinsældir bókar Helmuths hafa eflaust valdið því, að hluta upphaflega nafnsins var haldið, þegar að Fischer tók við, en jafnframt var annað nafn sett á bókina á sérstöku titilblaði: Elementar-Naturlehre für Lehrer an Seminarien und gehobenen Volksschulen wie auch zum Schul- und Selbstunterrichte methodisch bearbeitet von J. G. Fischer. Fimmtánda og síðasta úgáfa bókarinnar er frá 1855.

Áður en útgáfan frá 1843 kom út, las þýski eðlisfræðingurinn J. H. J. Müller yfir handritið og veitti Fischer jafnframt leyfi til að nota myndir úr bókinni Pouillet's Lehrbuch der Physik Und Meteorologie, für deutsche Verhältnisse frei bearbeitet von Dr. Joh. Müller. (Erster Band; Zweiter Band.), sem kom á prenti þetta sama ár. Þetta fræga eðlisfræðirit Müllers er að hluta byggt á verki franska eðlisfræðingsins  C. S. M. Pouillets.

Ekki er alveg ljóst, hvenær hætt var að að nota Eðlisfræði Fischers við kennsluna í Reykjavíkurskóla, en það kann að hafa verið um það leyti, sem Björn Gunnlaugsson lét af störfum árið 1862. Í staðin var tekin upp bókin Naturlærens chemiske Deel, sem C. L. Petersen, fyrrverandi lærsisvein Örsteds við Fjöllistaskólann, hafði þýtt úr þýsku. Mikilvægt er að hafa í huga, að ekki er um kennslubók í efnafræði að ræða, heldur endurspeglar nafnið hugtakakerfi Örsteds, sem áður hefur verið minnst á. Bókin fjallar um allar helstu greinar eðlisfræði þess tíma, en skólapiltar voru eingöngu látnir lesa kaflana um varmafræði,  rafmagnsfræði og segulfræði. Í aflfræðinni var stuðst við bók Örsteds eins og áður.

 

Birt í Eðlisfræði, Nítjánda öldin

Afstæðiskenningar Einsteins og grein Þorkels Þorkelssonar um tilraunir til að sannreyna þær

Þetta yfirlit var upphaflega birt í júní 2019 sem hluti af færslu um Þorkel Þorkelsson eðlisfræðing (1876-1961).

 

Afstæðiskenningar Einsteins

Takmarkaða kenningin

Einstein birti fyrstu greinar sínar um takmörkuðu afstæðiskenninguna árið 1905. Það ár hefur stundum verið kallað kraftaverkaárið, því auk greinanna um afstæðiskenninguna birti hann tímamótagreinar um ljósskammta og tilvist atóma.

Svo heppilega vill til, að á aldarafmæli almennu afstæðiskenningarinnar árið 2015 komu allar greinar Einsteins frá 1905 út í íslenskri þýðingu ásamt sögulegum inngangi og skýringum:

  • Þorsteinn Vilhjálmsson, ritstjóri, 2015: Einstein. Eindir og afstæði. Þriðji kafli bókarinnar fjallar um sögulegan aðdraganda afstæðiskenningarinnar, en greinar Einsteins sjálfs eru á síðum 253-284.

Eftir að Einstein birti yfirlitsgrein sína um almennu afstæðiskenninguna árið 1916 tók hann sig til og skrifaði bækling um kenningar sínar fyrir almenning. Ritið kom út í Þýskalandi árið 1916 og er til í íslenskri þýðingu:

Jafngildislögmálið

Árið 1907 tók Einstein að hugleiða, hvernig best væri að lýsa þyngdinni innan vébanda takmörkuðu afstæðiskenningarinnar. Það varð til þess, að hann uppgötvaði hið svokallaða jafngildislögmál (sjá grein Einsteins frá 1907, síðustu málsgreinarnar í §17), sem reyndist vera fyrsta skrefið í átt að almennu kenningunni. Lögmálið má orða á ýmsa vegu, en hér hentar best að nota framsetningu þar sem einfaldlega segir, að hröðun og þyngd séu jafngild.

Af jafngildislögmálinu leiðir meðal annars hið svokallaða þyngdarrauðvik (eða þyngdarblávik, eftir aðstæðum; sjá grein Einsteins, §19) og einnig, að ljós ferðast eftir sveigðum brautum í þyngdarsviði (grein Einsteins, neðarlega á bls. 483). Lögmálið eitt nægir til að reikna þyngdarrauðvikið, en aðeins helming ljóssveigjunnar. Hinn helmingurinn stafar af sveigju rúmsins, eins og í ljós kom í árslok 1915.

Árið 1911 birti Einstein greinina Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Þar gerir hann aðra tilraun til að leggja grunn að nýrri kenningu um þyngdina. Hann notar jafngildislögmálið til að finna bæði þyngdarrauðvik Fraunhofer-línanna í litrófi sólarinnar og sveigjuhorn ljósgeisla frá fjarlægri stjörnu, sem rétt sleikir sólaryfirborðið. Fyrir rauðvikið fær hann, að tíðni ljóss minnki um 0,0002% á leið frá sólinni til jarðar (bls. 493), sem er rétt niðurstaða. Fyrir sveigjuhornið fær hann hins vegar 0,83 bogasekúndur (bls. 496), sem er helmingi of lítið, eins og áður sagði. Réttu niðurstöðuna, 1, 75 bogasekúndur fann hann ekki fyrr en í nóvember 1915.

Eftir að greinin frá 1911 kom út, reyndi Einstein að vekja athygli stjörnufræðinga á niðurstöðum sínum í þeirri von, að einhver þeirra tæki sig til og reyndi að sannreyna þær með mælingum.  Meðal annars hafði hann samband við bandaríska stjörnufræðinginn G. E. Hale af þessu tilefni haustið 1913, en án árangurs.

Önnur af tveimur teikningum Einsteins í bréfi til G. E. Hales haustið 1913. Þar útskýrir hann ljóssveigjuna við rönd sólar og spyr, hversu nálægt sólinni megi sjá fastastjörnur í dagsljósi með nýjustu og bestu tækni.

Fyrsti stjörnufræðingurinn, sem brást jákvætt við beiðni Einsteins, var Erwin Finley Freundlich. Hann gerði ítrekaðar tilraunir til að mæla ljóssveigjuna við sólmyrkva og einnig að ákvarða þyngdarrauðvikið í ljósi sólar og annarra stjarna. Freundlich var hins vegar með eindæmum óheppinn og allar tilraunir hans til að staðfesta útreikninga Einsteins misheppnuðust. Um þá sögu má lesa nánar hér. Ýmsir aðrir stjörnufræðingar, sem síðar komu að samskonar mælingum, lentu í svipuðum vandræðum, enda valda margvíslegar ástæður því, að mælingarnar eru einstaklega erfiðar.

Þegar litið er til baka má segja, að það hafi verið lán Einsteins, að þessar fyrstu mælingar skyldu mistakast. Nákvæmar mælingar hefðu nefnilega sýnt, að ljóssveigjan nam tvöfaldri niðurstöðu hans frá 1911.

Leit Einsteins að almennu afstæðiskenningunni lauk ekki að fullu fyrr en í nóvember 1915 og handritið að yfirlistsgrein hans, Die Grundlage der allgemeinen Relativitätstheorie, var ekki tilbúið fyrr en í mars 1916.

Almenna kenningin

Í lok hinnar mögnuðu yfirlitsgreinar frá 1916 bendir Einstein á þrjár leiðir til að sannreyna kenninguna. Hina fyrstu, skýringu á ákveðnu misræmi í sígildum útreikningum og mælingum á sólnánd Merkúríusar, setti hann reyndar fram sjálfur í greininni (bls. 822). Einnig stakk hann upp á því, að stjörnufræðingar reyndu að mæla þyngdarrauðvikið í litrófi sólsjarna (bls. 820) og í þriðja lagi, að þeir mældu ljóssveigjuna við jaðar sólkringlunnar (bls. 821-22).

Einstein í desember 1919, um það leyti sem hann varð heimsfrægur.

Áður en lengra er haldið má nefna, að afstæðiskenning Einsteins frá 1915 hefur reynst sannspá um niðurstöður allra vandaðra mælinga, sem gerðar hafa verið til að sannreyna hana. Á hverju andartaki er hún staðfest með farsælli notkun GPS-tækninnar, sem væri ónothæf, ef þar væri ekki tekið fullt tillit til kenninga Einsteins um tíma, rúm og þyngd. Án afstæðiskenningarinnar hefði einnig verið illmögulegt að skilja eiginleika mikils fjölda nýrra fyrirbæra, sem fundist hafa í geimnum á undanförnum sextíu árum eða svo (til dæmis svarthola, þyngdarlinsa og þyngdarbylgna). Þá má minna á, að kenningin myndar hinn fræðilega grunn að heimsmynd nútíma stjarnvísinda.

Ágætis yfirlit um það, hvernig afstæðiskenningin hefur staðist tímans tönn, má meðal annars finna í eftirfarandi ritverkum:

 

Afstæðiskenningin á Íslandi 1913-1930

Ólafur Dan Daníelsson varð fyrstur Íslendinga til að fjalla um afstæðiskenninguna í rituðu máli. Það var í greininni Ýmsar skoðanir á eðli rúmsins, sem birtist í Skírni árið 1913. Greinin virðist hafa vakið litla athygli, þegar hún kom út, enda efnið mjög framandi fyrir flesta lesendur. Ekki er heldur að sjá, að afstæðiskenningin hafi komið aftur til umræðu hér á landi fyrr en sex árum síðar.

Eftirfarandi yfirlit um fyrstu viðbrögð Íslendinga við afstæðiskenningunni er að hluta byggt á mun ítarlegri umfjöllun í eftirfarandi ritsmíðum:

Eins og áður hefur komið fram, kviknaði áhugi hins almenna Íslendings á Einstein og kenningum hans við fréttir af sólmyrkvamælingum frægu árið 1919. Fréttin birtist fyrst í Vísi, en svo í öðrum hérlendum blöðum á næstu dögum.

Fyrsta íslenska fréttin um  sólmyrkvamælingarnar birtist í Vísi, 19. nóvember 1919, bls. 2.

Frekari skýringar fengust þó ekki fyrr en 5. desember, þegar Morgunblaðið birti greinina Byltingar í heimi vísindanna. Í greininni, sem er endursögn á grein úr danska dagblaðinu Politiken frá 18. nóvember (sem aftur byggði umfjöllun sína á greinum úr breska blaðinu London Times), segir meðal annars:

Þó hefir sú staðhæfing Einsteins vakið mesta athygli að hægt er að vega sólarljósið. En þó hefir það verið sannað meðal annars af tveimur stjörnufræðis rannsóknarnefndum sem athuguðu sólmyrkvan 29.maí sl. ár, bæði í Norður-Brasiliu og á vesturströnd Afríku. Kenningar eða uppgötvanir Einsteins bentu á það, að hreyfing reykistjarnanna væri dálítið frábrugðin því, sem Newton hélt fram. Þetta var sannað hvað braut Merkúrs snerti. En það veittist örðugt að sanna, að ljósið fylgdi öðrum reglum en þeim sem Newton hafði fundið. En meðan á sólmyrkvanum stóð, ljósmynduðu menn margar þær stjörnur, sem senda ljós sitt mjög nærri sólinni til jarðarinnar. Þá kom það í ljós, að geislar þesara stjarna, sveigðust mikið að sólinni um leið og þeir fóru fram hjá henni, vegna aðdráttarafls hennar. Þyngdarlögmál Newtons og yfirhöfuð allar kenningar hans raskast töluvert við þetta.

Fyrsta ritið um kenningar Einsteins, sem kom í íslenskar bókabúðir, var bókin Vort fysiske Verdensbillede og Einsteins Relativitetsteori eftir danska eðlisfræðinginn Helge Holst.

Í auglýsingu frá Bókaverslun Ársæls Árnasonar í Tímanum 28. ágúst 1920 segir svo um ritið:

Margur rak upp stór augu er hingað barst fréttin um að Þjóðverjinn Einstein hefði sýnt fram á að kenningar Newtons, sem öll eðlisfræði hafði hingað til verið bygð á, væru rangar. Þetta er alþýðlega skrifuð bók um þessa merkilegu nýjung; hefir þegar selst afarmikið hér í Reykjavík.

Þetta mun vera nokkuð góð lýsing á vinsældum bókarinnar, því hinn 28. október fjallar Alþýðublaðið um sama efni á forsíðu:

Menn ráku upp stór augu í fyrra vetur er sú fregn flaug eins og eldur í sinu um allan mentaðan heim að Gyðingurinn Einstein hefði gert uppgötvanir sem umturnuðu þyngdarlögmáli Newtons, sem síðan 168[7] hafði verið eini hyrningarsteinn eðlisfræðinnar. Erlendis var um sinn varla um annað talað en þessa merkilegu uppgötvun [...]  Á Íslandi var hljóðast um þetta, enda voru þeir víst teljandi er svo væri ljóst hvað hér hefði gerst að þeir gætu skýrt efnið fyrir öðrum, þó mun eigi hafa skort áhugan hér, eins og bezt kom í ljós á síðastliðnu sumri er hin ágæta alþýðubók [Holsts] kom hingað, því þótt bókaverslum Gyldendal sendi álitlegan forða [til Ársæls] er mælt að hann þó eftir fáa daga hafi orðið að síma eftir viðbót. Og ennþá selst kverið meira en flestar aðrar erlendar bækur.

Á næstu árum var talsvert ritað um Einstein, persónu hans og athafnir í íslenskum blöðum. Fjallað var um skoðanir hans á flestu milli himins og jarðar, ekki síst á þjóðfélags- og trúmálum. Þá var getið um andstöðuna, sem kenningar hans sættu, einkum í Þýskalandi.

Ekki má heldur gleyma tilraunum til að útskýra hugmyndir Einsteins á alþýðlegan hátt. Þar var einna fremstur í flokki heimspekingurinn Ágúst H. Bjarnason, eins og sjá má á eftirfarandi lista um slík fræðslurit frá árunum 1921-31:

  • J. Holtsmark, 1921: Einsteinskenning. (Þýðanda er ekki getið.)
  • A. Moszkowski, 1921-22: Einstein. (Þýðandi: Ágúst H. Bjarnason.)
  • Ágúst H. Bjarnason, 1926: Himingeimurinn (bls.184-188).
  • Ágúst H. Bjarnason, 1931: Heimsmynd vísindanna (bls. 7-35).

Af tvíeykinu Ólafi Dan og Þorkeli, var það fyrst og fremst Ólafur, sem lét til sín taka á þessu sviði. Fyrir utan greinina frá 1913, sem áður var getið, gaf hann út tvær fræðslugreinar um kenningar Einsteins, aðra tæknilega um takmörkuðu kenninguna 1921, hina alþýðlega árið 1922. Þar er bæði fjallað um takmörkuðu og almennu afstæðiskenninguna.

Allar þrjár ritsmíðar Ólafs um afstæðiskenninguna eru teknar til ítarlegrar skoðunar í eftirfarandi grein, og verður látið nægja að vísa til hennar hér:

Þá er lítið annað eftir, en ræða grein Þorkels Þorkelssonar frá 1926 um erlendar tilraunir til að sannreyna afstæðiskenninguna. Það verður gert í næsta og jafnframt síðasta kafla færslunnar.

Segja má, að um og uppúr 1930 hafi meirihluti eðlisvísindamanna verið farinn að líta á afstæðiskenninguna sem hina viðteknu kenningu um rúm, tíma og þyngd. Það hentar því ágætlega að hafa kaflaskil í sögunni um það leyti. Um framhaldið er það að segja, að í komandi færslu er ætlunin að gefa stutt yfirlit yfir kynni Íslendinga af stjarneðlisfræði og heimsfræði á árunum 1850 til 1960. Á seinni hluta þess tímabils kemur afstæðiskenningin talsvert við sögu. Í kjölfarið verður svo tímabilið eftir 1960 tekið fyrir, með megináherslu á rannsóknir í afstæðilegri stjarneðlisfræði við Háskóla Íslands.

 

Grein Þorkels um staðfestingu afstæðiskenningarinnar

Árið 1925 var afstæðiskenningin talsvert til umræðu í erlendum blöðum og tímaritum. Ástæðan var sú, að tveir vísindamenn í Bandaríkjunum höfðu birt niðurstöður nýrra mælinga er vörðuðu kenninguna. Annars vegar taldi W. S. Adams sig hafa mælt þyngdarrauðvik í litrófi hvíta dvergsins Síríusar B, en hins vegar hafði D. C. Miller endurtekið Michelson-Morley tilraunina og fengið aðrar niðurstöður en fyrirrennarar hans.

Þorkell hefur greinilega talið ástæðu til að segja félögum sínum í Verkfræðingafélaginu frá þessum nýju mælingum. Í apríl 1926 hélt hann því fyrirlestur í félaginu og birti hann síðan í riti félagsins:

Ekki kemur beinlínis fram í greininni, hvaða heimildir Þorkell hefur stuðst við, svo víða verður að geta í eyðurnar. Hins vegar er athyglisvert, að ólíkt öðrum íslenskum höfundum á þessum tíma, nálgast Þorkell viðfangsefnið á gagnrýnin hátt. Það skín þó í gegn, að hann er almennt jákvæður í garð afstæðiskenningarinnar. Í því sambandi má og minna á, að þótt almenningur hafi þegar verið búinn að taka Einstein í guðatölu árið 1926, voru ýmsir fræðimenn enn vantrúaðir á kenningar hans (sjá til dæmis hér).

Mæliniðurstöðurnar, sem Þorkell fjallar um, ollu talsverðum deilum í hópi stjarnvísindamanna á sínum tíma. Sjálfur lagði Þorkell þó ekkert nýtt til  alþjóðlegrar umræðu um efnið og grein hans hefur eingöngu menningarsögulegt gildi fyrir okkur Íslendinga. Langt er síðan deilumálin voru útkljáð, og til þessa hefur afstæðiskenning Einsteins staðist öll áhlaup, sem á hana hafa verið gerð (sjá í þessu sambandi heimildaskrána í lok kaflans um Einstein og afstæðiskenninguna hér að framan sem og aðra í lok færslunnar).

Mér finnst höfundurinn nálgast viðfangsefnið á áhugaverðan hátt og stíllinn er skemmtilega einkennandi fyrir löngu liðinn tíma. Ég leyfi mér því að vitna nokkuð oft í orð Þorkels hér á eftir.

Í upphafi vísar Þorkell til greina Ólafs Daníelssonar frá 1921 og 1922 og eftir stuttan ingang um „kjarnann í kenningu Einsteins“ segir hann:

Út frá þessu má nú finna margt merkilegt, sem í fljótu bragði skoðað virðist ekkert eiga skylt við afstæðiskenninguna. Jeg vil nú geta um sumt af þessu, og vel þá það, sem hægt hefir verið að prófa með tilraunum eða styðst við einhverjar athuganir.

Þótt titill greinarinnar vísi aðeins til tilraunar Michelsons, tekur Þorkell alls fyrir fimm afstæðileg fyrirbæri. Þau eru hraðaháður massi, brautarsnúningur Merkúríusar, ljóssveigja í þyngdarsviði, þyngdarrauðvik og loks Michelson-Morley tilraunin.  Í eftirfarandi umfjöllun fylgi ég sömu röð og Þorkell.

1. Afstæðilegur massi

Í örstuttri umfjöllun sinni skrifar Þorkell einfaldlega niður formúluna fyrir afstæðilegan massa hlutar, m, sem fall af hraða hans, vm (v) = m0 [1 - (v/c)2]. Hér er c ljóshraðinn í lofttæmi og m0 er svokallaður hvílumassi hlutarins. Þorkell notar reyndar „transversal massi“ fyrir m, gamalt orðalag sem byrjað var að nota fyrir daga afstæðiskenningar. Hér er einnig ástæða til að benda á, að í dag tala fræðimenn ekki lengur um afstæðilegan massa hlutar. Þess í stað er unnið með stærðina E/c2, þar sem E er heildarorka hlutarins. Með massa er nú ávallt átt við m0.

Næst vísar Þorkell til svokallaðra Kaufmann–Bucherer–Neumann tilrauna, án þess þó að nefna þær á nafn og segir einfaldlega:  „Tilraunirnar koma heim við formálann“.

Myndin sýnir niðurstöður mælinga á því, hvernig afstæðilegur massi rafeinda breytist með vaxandi hraða. Heila línan sýnir spá takmörkuðu afstæðiskenningarinnar. Mælingarnar voru gerðar á árunum 1909-15 og Þorkell hefur örugglega haft vitneskju um þær árið 1926. Teikning úr bókinni Special Relativity eftir A. P. French, 1968, bls. 23.

 

2. Brautarsnúningur Merkúríusar

Árið 1609 setti Kepler fram fyrstu tvö lögmálin af þremur, sem jafnan eru við hann kennd (hið þriðja kom ekki fyrr en 1619). Sjötíu og átta árum síðar, eða 1687, notaði Newton svo þyngdarlögmál sitt og hreyfilögmál til að leiða út Keplerslögmálin á snilldarlegan hátt.

Fyrsta lögmál Keplers segir, að brautir reikistjarnanna séu sporbaugar með sólina í öðrum brennipunkti. Newton áttaði sig fljólega á því, að þetta var einungis nálgun og að brautirnar yrðu fyrir truflunum vegna þyngdaráhrifa frá öðrum reikistjörnum. Ein af afleiðingunum er til dæmis svokallaður brautarsnúningur, sem lýsa má þannig, að með tímanum snýst langás brautarsporbaugs sérhverrar reikistjörnu hægt og rólega um sólina. Hið sama gildir þá augljóslega um sólnándina (perihelium).

Árið 1859 gaf hinn mikli reiknimeistari, U. Le Verrier, út niðurstöður truflanareikninga, sem hann hafði gert á braut Merkúríusar. Samkvæmt þeim átti sólnánd hnattarins að færast til um 527 bogasekúndur á öld, en sá galli var á gjöf Njarðar, að samkvæmt mælingum þess tíma var færslan meiri, eða sem nam 565 bogasekúndum á öld. Le Verrier fann enga aðra leið til að útskýra mismuninn, 38 bogasekúndur á öld, en að stinga upp á því, að hann stafaði af þyngdartruflunum frá áður óþekktum hnetti, Vúlkan, sem gengi um sólina innan við braut Merkúríusar. Tilgátan reyndist röng, en hin skemmtilega saga um þessa og aðrar tilgátur, sem og leitina að Vúlkan, verður ekki sögð hér.

Stjörnufræðingurinn S. Newcomb endurbætti útreikninga Le Verriers árið 1882 og með því að styðjast við betri mælingar á braut Merkúríusar sýndi hann fram á, að „umframfærsla“ sólnándarinnar nam 43 bogasekúndum á öld í stað 38.

Teikningin á að sýna, hvernig sólnánd Merkúríusar færist til um 575 bogasekúndur (9,5 bogamínútur) á öld. Færslan stafar fyrst og fremst af samanlagðri þyngdarverkun (truflunum) annarra reikistjarna en um 7,5%, eða 43 bogasekúndur á öld, eru til komin vegna afstæðilegra þyngdaráhrifa sólar. Mynd: Veraldarvefurinn.

Í nóvember 1915 notaði Einstein hina glænnýju kenningu sína um þyngdina til að reikna út afstæðileg þyngdaráhrif sólarinnar á braut dæmigerðar reikistjörnu. Niðurstaðan var sú, að í hverri umferð valda þau hægum snúningi á langás sporbaugsins um hornið Δφ, þar sem Δφ = 6πGM/c2a(1 - e2) í einingunni radían.  Hér er G þyngdarstuðull Newtons, M massi sólarinnar, a hálfur langás sporbaugsins og e hringvik hans. Fyrir Merkúríus nemur snúningurinn 5,0191 x 10-7 radíönum í hverri umferð, sem jafngildir 42,98 bogasekúndum á öld.

Í grein sinni afgreiðir Þorkell þessa miklu og merkilegu sögu einfaldlega með orðunum:

Afstæðiskenningin skýrir þessa breytingu á sólarnámunda Merkúrs og átti hún að vera 43". Þetta væri ágæt staðfesting á kenningunni. En menn fóru að rannsaka betur athuganirnar og komust að þeirri niðurstöðu að breytingin væri eigi nema 38" eða jafnvel 29", og þá varð samræmið miður gott og þetta litill stuðningur afstæðiskenningunni.

Hvaðan niðurstaðan 29" er komin, veit ég ekki.

Því miður fjallar almanaksmeistarinn Þorkell Þorkelsson um ljóssveigjumælingarnar (sjá næsta lið) með álíka stuttaralegum hætti og brautarsnúninginn. Hins vegar er umfjöllun hans um þyngdarrauðvik og tilraun Michelsons mun ítarlegri og vandaðri (sjá liði 4 og 5).

3. Sveigja ljóss í þyngdarsviði

Hér að framan var rætt stuttlega um útreikninga Einsteins á afstæðilegri ljóssveigju árið 1915 og einnig um sólmyrkvamælingarnar frægu árið 1919. Frekari umfjöllun um þetta áhugaverða efni er meðal annars að finna hér:

Í almennu afstæðiskenningunni er sveigjuhorn ljósgeisla, sem rétt sleikir yfirborð venjulegs hnattar, gefið með formúlunni  θ = 4GM/Rc2 þar sem θ er sveigjuhornið í radían, M massi hnattarins og R radíus hans. Ef M er gefinn upp í sólarmössum og R í sólarradíum, má skrifa formúluna sem θ = 1,75 M/R bogasekúndur. Þannig er sveigjuhornið við sólaryfirborðið 1,75 bogasekúndur.

Þessi skemmtilega myndræna lýsing á sveigju ljóss í þyngdarsviði er úr grein Ólafs Daníelssonar um afstæðiskenninguna frá 1922. St er fjarlæg stjarna, S er sólin og J jörðin. Lesa má skýringar höfundar á bls. 49-50 í greininni, en í stuttu máli má segja, að þarna beitir hann jafngildislögmáli Einsteins til að sannfæra lesendur um það, að ljósið (geislinn g) sveigi af leið við það að fara fram hjá sólinni.

Það virðist ekki hafa verið á margra vitorði hér heima árið 1926, að ljóssveigjumælingar Bretanna frá 1919 höfðu þegar verið staðfestar árið 1922. Þar var um að ræða sérlega vandaðar myrkvamælingar stjörnufræðinga frá Lick athugunarstöðinni, sem gerðar voru í Ástralíu:

Það er því lítið annað en þekkingarleysi, sem getur afsakað eftirfarandi ummæli Þorkels í grein hans (bls. 21-22):

Ljósgeislar sem fara fram hjá sólunni eiga að breyta stefnu, samkv. afstæðiskenningunni, á sama hátt og steinn eða hver annar hlutur mundi á þeirri leið breyta stefnu sinni, ef honum væri kastað með hraða ljóssins. Þá er almyrkvi verður á sólu má prófa þetta. Stjörnurnar, sem ættu að sjást rjett hjá sólunni, virðast breyta afstöðu ofurlítið, vegna þess að geislarnir frá þeim gerðu sveig á sig, er þeir fóru fram hjá sólunni. Mælingar hjer að lútandi koma vel heim við afstæðiskenninguna. En í rauninni verður þetta lítil sönnun. Ljóssveigjuna má skýra á margan annan hátt, t. d. sem ljósbrot.

Hugmyndum þess efnis, að  ljóssveigjan orsakist ekki af þyngdinni, heldur einhverju öðru, til dæmis ljósbroti í hugsanlegum „lofthjúp“ sólar, var hreyft  fljótlega eftir að tilkynnt var um mælingar Breta í nóvember 1919. Í grein þeirra um mælingarnar frá því í ársbyrjun 1920 er þetta tekið fyrir og afsannað (sjá bls. 292-93):

Telja má nær fullvíst, að Þorkell hafi ekki haft aðgang að þessari frægu grein.

4. Þyngdarrauðvik

Árið 1924 hafði A. S. Eddington samband við bandaríska stjörnufræðinginn W. S. Adams og spurði hann um möguleika þess að mæla þyngdarrauðvikið í ljósi hvíta dvergsins Síríusar B. Eddington var fremsti stjarneðlisfræðingur síns tíma og helsti málsvari afstæðiskenningarinnar, fyrir utan Einstein sjálfan. Hann hafði gegnt veigamiklu hlutverki í ljóssveigjumælingunum árið 1919 og notaði niðurstöðurnar óspart til að vekja almenna athygli á afstæðiskenningunni og mikilvægi hennar.

Síríus, bjartasta sólstjarnan á næturhimninum er í raun tvístirni. Sirius A (stóra stjarnan á miðri mynd) er venjuleg sólstjarna á meginskeiði, en Sirius B (litli ljósdepillinn sem örin bendir á) er hvítur dvergur. Aðrir deplar, línurnar og hringirnir á myndinni eru ljósfyrirbæri í myndavélabúnaði. Myndin er tekin með Hubble-sjónaukanum. Sjá nánar hér.

Áður en lengra er haldið er rétt að nefna, að á þessum tíma var það regla, frekar en undantekning, að gefa rauðvik almennt upp sem tilsvarandi „Doppler-hraða“, v = cz, þar sem z =  Δλ/λ0 er rauðvikið og λ bylgjulengdin. Samkvæmt almennu afstæðiskenningunni er þyngdarrauðvik ljóss frá venjulegum hnetti með massa M og radíus R gefið með formúlunni z = GM/Rc2 (athugið að Þorkell notar k í stað G). Ef M er gefinn upp í sólarmössum og R í sólarradíum, má skrifa þyngdarrauðviks-formúluna sem v = 0,6 M/R km/s. Samkvæmt því svarar þyngdarrauðvik sólarljóssins til hraðans 0,6 km/s (eða um 2 þúsund km á klst). Á þessum tíma höfðu þegar verið gerðar margar tilraunir til að mæla rauðvik Fraunhofer-línanna í sólarrófinu, en þegar upp var staðið reyndust allar niðurstöðurnar ómarktækar.

Bréf Eddingtons frá 1924 varð til þess, að Adams hóf litrófsmælingar á Síríusi B með stærsta sjónauka heims á þeim tíma, 100 þumlunga spegilsjónaukanum á  Wilsonsfjalli. Árið 1925 taldi hann sig vera kominn með ótvíræðar niðurstöður, sem væru í fullu samræmi við útreikninga Eddingtons frá árinu áður. Eddington hafði gert ráð fyrir, að yfirborðshiti dvergsins væri 8000 gráður og með því að nota þá tölu, ásamt öðrum þekktum mælistærðum, fékk hann, að radíus dvergsins væri 19.600 km og rauðvikið 20 km/s. Einnig að meðalþéttni dvergsins væri 53.000 sinnum meiri en vatns. Mæliniðurstöður Adams voru 18.000 km fyrir radíus dvergsins og 21 km/s fyrir rauðvikið.

Í umfjöllun sinni um þetta efni fer Þorkell Þorkelsson í gegnum umtalsverða reikninga, þar sem hann beitir eingöngu sígildri eðlisfræði. Fyrst notar hann aflfræði Newtons og jafngildislögmál Einsteins til finna þyngdarauðvikið við yfirborð sólar og fær rétta niðurstöðu, z =  0,000002, sem samsvarar Doppler-hraðanum v = 0,6 km/s. Um þetta segir í greininni:

Þetta er lítil breyting á öldubreiddinni, en samt mælanleg, og eðlisfræðingar og stjörnufræðingar hafa þótst geta fundið, að mælingarnar kæmu heim við reikninginn. En aðrir telja þetta litla sönnun, því að mælingin á þessari litlu breytingu getur ekki orðið nákvæm og margt sem truflar. Straumar í gufuhvolfi sólarinnar hafa svipaðar verkanir samkvæmt reglu Dopplers; ennfremur getur þrýstingur haft áhrif í sömu átt, og vandi að sjá þess vegna, hvaðan áhrifin stafa. En nú hafa menn fundið aðra stjörnu, þar sem þetta sjest betur. Það er dvergstirnið, sem hringsólar um Sirius.

Þorkell ákvarðar síðan rauðvikið frá Síríusi B á athyglisverðan hátt. Hann notar fyrst sígilda aflfræði og mælingar á árlegri hliðrun og birtu Síríusar til að finna fjarlægð og ljósafl tvístirnisins og massa dvergsins. Hann gefur sér sama yfirborðshita og Eddington og beitir Stefan-Boltzmann lögmálinu til að reikna stærðina. Að því loknu reiknar Þorkell þyngdarrauðvik dvergstjörnunnar og fær að z = 0,000076 eða v = 23 km/s.

Þessi öldubreyting er svo mikil, að vel er hægt að mæla hana. Reyndar gerir Sirius athuganirnar erfiðar, því að hann er svo nálægt dvergnum og margfalt skærari, en samt hefir W. Adams tekist að gera þessar mælingar í stjörnuturninum í Mount Wilson. Mælingar þessar koma mjög vel heim við afstæðiskenninguna.

Eitt atriði virðist þó vefjast fyrir Þorkeli, nefnilega hin mikla massaþéttni Síríusar B:

Massi (eða þungi) dvergsins [er] talinn jafn massa sólarinnar, en radius hans 35.6 sinnum minni [þ.e. 20 þúsund km]. En þar af leiðir, að eðlisþungi dvergsins er [...] 45000 sinnum meiri en eðlisþyngd sólar, eða með öðrum orðum, eðlisþyngd dvergsins verður 50—60 þúsund sinnum eðlisþyngd vatnsins. Fyrir flesta er það nokkuð erfitt að átta sig á þessari miklu eðlisþyngd, en stjörnufræðingum kvað ekkert þykja undarlegt við hana.

Svo óheppilega vill til, að nokkrar stærðanna, sem Þorkell notar við reikningana, eru fjarri réttu lagi. Sem dæmi má nefna, að þótt hann noti réttan massa er yfirborðshiti dvergsins í raun 3,2 sinnum meiri en Þorkell gerir ráð fyrir og stærðin um 3,4 sinnum minni. Rauðvikið sem hann fær út verður því 3,5 sinnum of lítið og eðlismassinn um 44 sinnum of lítill. Niðurstaða hans er þó í samræmi við útreikninga Eddingtons og mælingar Adams.

Rétt er að geta þess, að þyngdarrauðvik Síríusar B var ekki mælt með öruggum hætti fyrr en árið 1971, þegar bandarískir stjörnufræðingar beindu 200 þumlunga sjónaukanum á Palomarfjalli að dvergnum. Niðurstaða þeirra var z = 89 ± 16 km/s.

Ellefu árum áður hafði í fyrsta sinn verið sýnt fram á það með óyggjandi hætti, að þyngd veldur rauðviki, nákvæmlega á þann hátt sem almenna afstæðiskenningin segir til um. Það var í hinni frægri tilraun Pounds og Rebka árið 1960. Þar beittu þeir svonefndum Mössbauermælingum til að ákvarða rauðvik (og einnig blávik) gammageisla í þyngdarsviði jarðarinnar.

Eftirfarandi greinar gefa ágætis yfirlit yfir sögu hugmynda um þyngdarrauðvik og fyrstu tilraunirnar til að mæla það hjá himintunglum:

5. Tilraun Michelsons og Morleys

Orðið ljósvaki kemur fyrst fyrir í þýðingu Jónasar Hallgrímssonar á Stjörnufræði Ursins, sem kom út 1842. Eftir því sem ég best veit, er þar jafnframt að finna fyrstu lýsinguna á þessu merkilega fyrirbæri á íslensku (sjá bls. 9). Þegar nær leið aldamótunum, kom ljósvakinn æ oftar til umræðu hér á landi, enda virtist hann nauðsynlegur til þess að útskýra fjölmargar nýjar uppgötvanir um eiginleika ljóssins og útbreiðslu þess. Á hinn bóginn gerði ný þekking það að verkum, að ljósvakinn varð æ dularfyllri með tímanum. Í greininni Heimur og geimur frá 1917 fjallar Þorvaldur Thoroddsen all ítarlega um fyribærið (bls. 38-42) og segir meðal annars:

Þetta efni, sem ber Ijósið frá yztu endimörkum alheimsins til skilningarvita vorra, hefur verið kallað ljósvaki (eter eða heimseter), og er þó varla hægt að kalla það efni í vanalegum skilningi, því það vantar þá eiginlegleika, sem önnur áþreifanleg og loftkynjuð efni hafa; ljósvakinn er svo dularfullur að eðli sínu, að rannsókn vísindamanna rekur sig alstaðar í vörðurnar, einkennin, sem tilraunirnar sýna, lenda í eintómum andstæðum og endileysum. Með öðrum orðum: ljósvakinn virðist að mestu leyti fyrir utan takmörk mannlegrar skynjanar.

Þorvaldur fjallar ekkert um afstæðiskenninguna í þessari annars ágætu grein, nema hvað hann vísar lesendum neðanmáls (bls. 33) á grein Ólafs Daníelssonar frá 1913. Þetta er í sjálfu sér ekki undarlegt, því það var ekki fyrr en um og eftir 1920, sem afstæðiskenningin og tilraunir henni  tengdar komu til umfjöllunar hér á landi. Þetta má til dæmis sjá á grein Þorkels Þorkelssonar um Röntgengeisla frá 1916. Þar kemur skýrt fram, að höfundurinn telur geislana vera bylgjuhreyfingu í ljósvakanum. (Sjá einnig Viðbót 1 aftast í færslu.)

Þótt A. A. Michelson hafi fyrst reynt að sýna fram á tilvist ljósvakanns árið 1881, var árangurinn ófullnægjandi og það var ekki fyrr en á árinu 1887, sem honum tókst að fullkomna mælinguna í samvinnu við  félaga sinn E. W. Morley. Af þeirri ástæðu er nú yfirleitt talað um Michelson-Morley tilraunina.

A. A. Michelson (til vinstri) og E. W. Morley (til hægri) um það leyti, sem þeir framkvæmdu tilraunina frægu. Myndir: Physics Today, maí 1987, bls. 50-51.

Grundvallarhugmynd Michelssons var sú að nota víxlun ljóss til að ákvarða hraða jarðar miðað við ljósvakann og sýna þannig fram á tilvist vakans. Öllum til mikillar undrunar, og ekki síst þeim sjálfum, komust þeir Morley að þeirri niðurstöðu, að jörðin stæði kyrr í ljósvakanum. Þetta var í hrópandi mótsögn við sígilda aflfræði Newtons og ríkjandi hugmyndir um eðli ljóss og vaka. Niðurstaðan olli því miklu hugarangri meðal sérfræðinga. Margir af fremstu eðlisfræðingum heims glímdu við vandamálið árum saman, en eins og frægt er orðið var það nýgræðingurinn Einstein, sem fann lausnina árið 1905. Ein af niðurstöðum hans var sú, að ljósvakinn væri óþarfur og tilgátan um tilvist hans því sennilega röng. Um þá sögu má lesa nánar hér.

Eins og áður hefur komið fram, voru niðurstöður bandaríska eðlisfræðingsins D. C. Millers ein helsta ástæða þess, að Þorkell gaf út grein sína um afstæðiskenniguna árið 1926. Miller hafði endurtekið tilraun þeirra Michelsons og Morleys og taldi sig hafa sýnt fram á hreyfingu jarðar í ljósvakanum. Fréttir af mælingum hans vöktu mikla athygli víða um heim og birtust meðal annars í Eimreiðinni árið 1925 (bls. 324-25).

Þorkell með stærðfræðideildarnemum í 6. bekk C vorið 1926. Af teikningunni á töflunni má ráða, að hann hefur verið að útskýra hinn fræga víxlmæli Michelsons fyrir bekknum. Frá vinstri: Þorkell, Bjarni Sigurðsson, Einar Sveinsson, Gísli Gestsson, Jón Stefánsson, Árni B. Árnason, Ragnar Ólafsson, Ingólfur Gíslason, Valgarð Thoroddsen og Júlíus Sigurjónsson. Ljósmynd: Ólafur Magnússon.

Eftir að hafa útskýrt  víxlmæli Michelsons í talsverðum smáatriðum og rætt um fyrri niðurstöður þeirra Michelsons og Morleys í greininni, snýr Þorkell sér að Miller og mælingum hans:

Prófessor D. C. Miller gerði í mars og apríl árið 1921 þessar sömu tilraunir á ný í stjörnuturninum á Mount Wilson í Californiu í 1730 metra hæð yfir sjó (37° 20' norðurbreiddar 121° 33' vesturlengdar). Hann fann nú, að ljósið var ekki jafn lengi í báðar áttirnar, og taldist svo til af mun, sem varð á ljósöldunum, að uppi á Mount Wilson væri ljósvaka-straumur, sem svaraði til 1/3 af hraða jarðar á braut sinni kring um sólina.

Um mælingarnar 1925 segir hann:

Þessar [nýju] mælingar prófessors Millers virðast ósamrímanlegar við afstæðiskenningu Einsteins. Eftir mælingunum að dæma, dregur jörðin ljósvakann með sjer á hreyfingu sinni; niður við yfirborðið hefir ljósvakinn því sem næst sömu hreyfingu og jörðin, en þegar hærra kemur frá yfirborði jarðar, verður meiri munur á hreyfingu jarðar og ljósvakans.

Þorkell fjallar síðan um hreyfingu jarðar um sólina, hraða sólkerfisins meðal nálægra stjarna og loks ferðalag sólar og næstu stjarna miðað við „stjörnuhópa geimsins“. Þá ræðir hann álit stjörnufræðinga á mælingum Millers og segir síðan:

 Nú er svo málum komið, að annarsvegar stendur afstæðiskenning Einsteins, en hinsvegar hin gamla tilraun Michelsons, sem upphaflega varð til þess, að afstæðiskenningunni var hleypt af stokkunum, en nú í höndum Millers hefir brugðið fæti fyrir hana, svo að ekki er annað sýnilegra, en að annaðhvort verði hún afstæðiskenningunni að falli, eða að mælingar Millers sjeu ónýtar.

Dómur sögunnar er ótvíræður: Mælingar Millers reyndust ónýtar og afstæðiskenning Einstein stendur nú traustari fótum en nokkru sinni fyrr.

Það er við hæfi að ljúka þessari færslu með lokaorðum Þorkels úr greininni frá 1926. Þau lýsa sennilega viðhorfum hins dæmigerða eðlisfræðings til afstæðiskenningarinnar fyrir um það bil 90 árum:

[Afstæðiskenningin] hefir komið af stað merkilegum tilraunum, sem áttu að gera út um það, hvort hún væri rjett, en þótt margt hafi fundist, sem er eftir hennar anda og hugsun, hefir ekki ennþá tekist að sanna hana, svo að ótvírœtt sje. En margt nýtt hefir hennar vegna komið í ljós.

Ennþá eru samt nokkrir henni fráhverfir, og ennþá fleiri, sem skoða hana eigi nema hálfan sannleika, en þó eru þeir sennilega flestir, sem hafa sannfærst um það, að hún væri i alla staði rjett. Hún er orðin svo samgróin hugsun margra, að þeir reyna ekki að uppræta hana aftur úr hugsun sinni, nema knýjandi staðreyndir neyði þá til þess. Fyrst verða tilraunirnar, sem ganga i öfuga átt, vjefengdar, og ef ekki er hægt að vjefengja þær, þá verður reynt að finna nýjar leiðir til að samríma afstæðiskenninguna tilraununum, ef til vill með þvi að breyta einhverju í afstæðiskenningunni, en síðast verður sá kosturinn tekinn að kasta henni alveg fyrir ofurborð. En jafnvel þó að svo færi, hefði hún eigi verið til einskis, því að auk hins nýja, sem henni er að þakka, hefir hún sett sitt mót á hugsun þeirra vísindamanna, sem nú eru uppi, og þeirra áhrifa gætir lengi.

Birt í Eðlisfræði, Stærðfræði, Stjörnufræði, Tuttugasta öldin